
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2016

Performance analysis and acceleration of nuclear
physics application on high-performance
computing platforms using GPGPUs and
topology-aware mapping techniques
Dossay Oryspayev
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Oryspayev, Dossay, "Performance analysis and acceleration of nuclear physics application on high-performance computing platforms
using GPGPUs and topology-aware mapping techniques" (2016). Graduate Theses and Dissertations. 16524.
https://lib.dr.iastate.edu/etd/16524

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16524?utm_source=lib.dr.iastate.edu%2Fetd%2F16524&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Performance analysis and acceleration of nuclear physics application

on high-performance computing platforms using GPGPUs and topology-aware

mapping techniques

by

Dossay Oryspayev

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:

Pieter Maris, Co-major Professor

Joseph Zambreno, Co-major Professor

Yong Guan

Diane Rover

James Vary

Iowa State University

Ames, Iowa

2016

Copyright c© Dossay Oryspayev, 2016. All rights reserved.



www.manaraa.com

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of the research work . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

CHAPTER 2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Brief overview of MFDn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Lanczos Algorithm (LA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Storage formats for sparse matrices . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Common Storage Formats . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Compressed Sparse Block Format . . . . . . . . . . . . . . . . . . . . . . 14

2.4 LA execution in MFDn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 3. INTRODUCTION OF GPGPUs IN AB INITIO NUCLEAR

PHYSICS CALCULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 CUDA Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



www.manaraa.com

iii

3.3 MFDn Tasks to Be Executed on GPGPUs . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Closer look at the Hamiltonian matrix element evaluation . . . . . . . . 23

3.3.2 Matrix structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Basis Transformation Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

3.4 GPGPU Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

CHAPTER 4. PERFORMANCE ANALYSIS OF DISTRIBUTED SPMVM

ALGORITHMS FOR MULTI-CORE ARCHITECTURES . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Distributed SpMVM Methods for Multi-core Architectures . . . . . . . . . . . . 38

4.3.1 Approach a1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Approach a2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3 Approach a3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Network Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Description of the Computing Platforms . . . . . . . . . . . . . . . . . . 45

4.5.2 Analysis of the Obtained Results . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 5. TOPOLOGY-AWARE MAPPING FOR A LARGE-SCALE

EIGENSOLVER ON A TORUS NETWORK . . . . . . . . . . . . . . . . . . 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Mappings proposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Mira, an IBM BG/Q, supercomputer . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Heuristics for task mapping . . . . . . . . . . . . . . . . . . . . . . . . . 60



www.manaraa.com

iv

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Results using dataset #1 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Results using dataset #2 . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Network load model and evaluation of mappings . . . . . . . . . . . . . . . . . 83

5.4.1 Evaluation of mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

CHAPTER 6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

APPENDIX ADDITIONAL DATA FOR CHAPTER 5 . . . . . . . . . . . . . 95

A.1 Information on column message size during parallel LA execution in MFDn . . 95

A.2 Sample BaseAlt mapping file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.3 Results of best run setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



www.manaraa.com

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to those who helped

me with various aspects of research and writing of this thesis. First and foremost, Dr. Pieter

Maris for his guidance, patience, and support throughout this research and the writing of

this thesis. His expert advice, careful attention to details, and feedback and suggestions on

countless drafts of my thesis has been invaluable to me. I am deeply grateful to Dr. Joseph

Zambreno for his guidance, support, encouraging conversations, and for generously sharing his

time and expertise. I am thankful to Dr. James Vary for his support and allowing me to

conduct research using his allocation times on supercomputers. I would also like to thank Dr.

Diane Rover and Dr. Yong Guan for insightful comments, questions, and suggestions which

improved my thesis. I would like to thank Dr. Masha Sosonkina for her great support and

guidance during my initial years of graduate studies. I am also grateful to Dr. Glenn Luecke

and Dr. Metin Aktulga for their support at various stages of my research. Finally, and most

importantly, I would like to thank my family for their love and endless support.

A portion of the computational resources were provided by the National Energy Research

Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the

US DOE Office of Science under Contract No. DE-AC02-05CH11231, and by the Innovative and

Novel Computational Impact on Theory and Experiment (INCITE) program. This research

used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC05-00OR22725. This research also used

resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User

Facility supported under contract DE-AC02-06CH11357.



www.manaraa.com

vi

ABSTRACT

The number of nodes on current generation of high performance computing (HPC) platforms

increases with a steady rate, and nodes of these computing platforms support multiple/many

core hardware designs. As the number of cores per node increase, either CPU or accelerator

based, we need to make use of all those cores. Thus, one has to use the accelerators as much as

possible inside scientific applications. Furthermore, with the increase of the number of nodes,

the communication time between nodes is likely to increase, which necessitates application spe-

cific network topology-aware mapping techniques for efficient utilization of these platforms. In

addition, one also needs to construct network models in order to study the benefits of specific

network mapping. The specific topology-aware mapping techniques will help to distribute the

computational tasks so that the communication patterns make optimal use of the underlying

network hardware. This research will mainly focus on the Many Fermion Dynamics nuclear

(MFDn) application developed at Iowa State University, a computational tool for low-energy

nuclear physics, which utilizes the so-called Lanczos algorithm (LA), an algorithm for diago-

nalization of sparse matrices that is widely used in the scientific parallel computing domain.

We present techniques applied to this application which enhance its performance with the uti-

lization of general purpose graphics processing units (GPGPUs). Additionally, we compare

the performance of the sparse matrix vector multiplication (SpMVM), the main computation-

ally intensive kernel in the LA, with other efficient approaches presented in the literature.

We compare results for the total HPC platforms’ resources needed for different SpMVM im-

plementations, present and analyze the implementation of communication and computation

overlapping method, and extend a model for the analysis of network topology presented in

the literature. Finally, we present network topology-aware mapping techniques, focused at the

LA stage, for IBM Blue Gene/Q (BG/Q) supercomputers, which enhance the performance as

compared to the default mapping, and validate the results of our test using the network model.
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CHAPTER 1. INTRODUCTION

In this section we give a brief introduction to the research work of this thesis and summarize

the contributions of the works performed. Specifically, section 1.1 presents the motivation of

this research, section 1.2 presents the contributions of the research work done, and section 1.3

lays out the organization of the thesis.

1.1 Motivation

The advent of supercomputers, HPC platforms, has led to many advances in science by

making it possible to tackle large scientific problems. For example, complex models for severe

weather forecasting, advanced models for the spread of infectious diseases, and molecular dy-

namics modeling rely on supercomputers. In recent years we have witnessed steady growth

both in the number of cores per node (either through accelerators or in many-core nodes) and

in the number of nodes available on supercomputers, which gives a tremendous computing

power to them. To this date, according to the latest list of TOP 500 supercomputers [3] in the

world, November, 2015, the #1 supercomputer in the world, Tianhe-2 (Milkyway-2) features

16, 000 compute nodes, and a total of 3, 120, 000 cores.

With so many cores available, when tackling a scientific application problems ported to

these supercomputers, issues of data locality and data placement within a node, as well as

communication between nodes needs to be carefully addressed. Detailed knowledge about the

memory hierarchy within the node and the interconnect between the nodes becomes crucial for

applications. So, one should consider both application and hardware specific information to

utilize the full power of the resources available at hand.
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One has to use hybrid programming paradigms on these supercomputers because of dis-

tributed and shared memory infrastructures. Multi-level parallelism on these supercomputers

present the possibility of overlapping communication with computation. Moreover, shared

memory designs, the arrival of accelerators such as GPGPUs and introduction of Intel1’s Many

Integrated Core (MIC) architecture added more complexity to the programming and efficient

utilization of current supercomputers. These new technological advances require detailed knowl-

edge of both hardware and software.

In order to reduce communication overhead, one has to first understand the communication

patterns in the application, and then map these communication patterns efficiently onto the

physical network connecting the nodes of a specific supercomputer. With the help of a network

model one can quantitatively analyze the performance of different mappings, and once vali-

dated, use the network model to choose suitable mappings for future calculations. The main

goal of this research work is to address these issues and present solutions to improve the overall

performance of scientific application–MFDn.

MFDn [66, 1] is a scientific application for performing large-scale ab initio calculations of

atomic nuclei. It runs on several HPC platforms worldwide; within the U.S. more than 100

million CPU hours were used by this application in 2015 on the supercomputers at National

Energy Research Scientific Computing Center2 (NERSC), Oak Ridge National Laboratory3

(ORNL), and Argonne National Laboraty4 (ANL). MFDn has been developed at Iowa State

University by Vary and collaborators for more than two decades [66]. Significant improvements

in the performance of MFDn have been made under the U.S. Department of Energy Scien-

tific Discovery through Advanced Computing (SciDAC) [64] project, Universal Nuclear Energy

Density Functional (UNEDF, 2007-20012) [5], and ongoing under the SciDAC Nuclear Com-

putational Low-Energy Initiative (NUCLEI) [2] project. The “SciDAC program was created

to bring together many of the nation’s top researchers to develop new computational methods

for tackling some of the most challenging scientific problems” [64]. These efforts resulted in a

1http://www.intel.com
2https://www.nersc.gov
3https://www.ornl.gov
4https://www.anl.gov

http://www.intel.com
https://www.nersc.gov
https://www.ornl.gov
https://www.anl.gov
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hybrid Message Passing Interface (MPI) [44]/Open Multi Processing (OpenMP) [49] Fortran 90

code that uses MPI for communication among different nodes and OpenMP for multi-threaded

execution within a node, which scales to thousands of nodes.

In MFDn the quantum many-body Schrödinger equation for atomic nuclei is represented as

a sparse matrix problem. It uses LA [40, 59] to obtain the lowest eigenvalues and eigenvectors

of this sparse symmetric many-body Hamiltonian matrix. Each Lanczos iteration consists of

a SpMVM followed by an orthogonalization. By far, the most computationally intensive parts

of the calculation are: (1) constructing the large sparse matrix and (2) obtaining the lowest

eigenvalues and eigenvectors of this matrix. The dimension of this matrix can reach several

billions, but it is a very sparse matrix. The symmetry of the matrix allows us to store only

the half of the matrix (including the diagonal matrix elements). Optimal use of the limited

amount of computing resources require efficient construction of the nuclear Hamiltonian matrix

and efficient SpMVM, which is the computationally intensive kernel of the LA. A complicating

factor is that only half the matrix is stored due to memory limitations; therefore, one also has

to perform an efficient transpose SpMVM, SpMVMT, with the same data structure.

1.2 Contributions of the research work

The goal of this research is to be able to analyze the specific topology-aware mapping

techniques and enhance the execution of MFDn application in the presence of new technological

and network infrastructural advancements in the HPC domain. One of the main metrics of

importance to us is the “aggregate CPU core hours” (or “Raw Machine hours”), which is an

important indicator of supercomputer usage and measured by multiplying the total number of

cores used with the total time of execution. In this thesis, we first show the porting of a specific

part of the MFDn application onto GPGPUs, and present the speedups obtained. Next, we

focus on the performance of the SpMVM used during the Lanczos iterations, for which we

compare different data structures for storing the matrix and different implementations for the

SpMVM. We also extend the network model to analyze the communication during the SpMVM.

Finally, we propose topology-aware mappings which significantly improve the performance of
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MFDn on IBM5 BG/Q supercomputers. We then further extend the model to evaluate the

proposed mappings and verify their efficiency compared to the default mapping on IBM BG/Q.

The main contributions of this thesis can be summarized as follows:

1. Introduction of GPGPU into MFDn: In the work presented in [52], we describe

initial steps of leveraging accelerators, such as GPGPUs, in ab initio nuclear physics

calculations. Specifically, we outlined and implemented the necessary steps to make

MFDn utilize GPGPUs during its matrix construction stage for runs with 2- and 3-body

forces. (For such runs the matrix construction typically takes about 20% to 40% of the

total runtime.) The experiments are presented comparing the multithreaded CPU-based

version of this stage with the newly designed GPGPU-based version. Four- to ten-fold

speedups were observed for the code executing on GPGPUs. Results are presented in

Chapter 3 6.

2. Analysis of different SpMVM techniques: In this work [50], we present the analysis

of different distributed SpMVM techniques. Symmetric SpMVM, used in MFDn, is an

important kernel that frequently arises in HPC scientific applications. Since SpMVM is a

kernel with low arithmetic intensity, several approaches have been proposed in the litera-

ture to improve its scalability and efficiency in large scale computations. In this work, our

target systems are high-end multi-core architectures and we use a hybrid programming

model, MPI+OpenMP, for parallelism. We analyze the performance of an implementa-

tion of the distributed symmetric SpMVM, originally proposed for large sparse symmetric

matrices arising in ab initio nuclear structure calculations, used in MFDn application.

First, we study important features of this implementation and compare it with other

SpMVM implementations that do not exploit the symmetry of the matrices. Our main

comparison criteria is the “aggregate CPU core hours” metric. Second, since the commu-

nication overhead becomes crucial for large-scale runs on supercomputers, we analyze the

mapping of logical process ranks onto the physical processors using a simplified network

5http://www.ibm.com
6Modified from a paper published in Parallel and Distributed Processing Symposium Workshops & PhD Forum

(IPDPSW), 2013 IEEE 27th International [52].

http://www.ibm.com
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load model. Third, we orchestrate an overlapping of communication and computation

using the hybrid MPI+OpenMP paradigm. The SpMVM implementation that takes the

matrix symmetry into account and hides communications yields the best value for the

“aggregate CPU core hours” metric while incurring a reduced communication overhead

in data movement. Results are presented in Chapter 4 7.

3. Performance improvement of LA on an IBM BG/Q supercomputer through

topology-aware mappings: We propose new mappings which utilize the network inter-

connect of Mira, an IBM BG/Q, supercomputer that are more efficient than the default

mapping. The current mapping used in MFDn was based on the Cray8’s scheduler used

on Hopper, Cray XE6, supercomputer, which ensured that physically nearby processing

units are ranked consecutively [9]. This mapping seems to be effective for platforms with

schedulers that have sparse allocations, with non-contiguous (blocks of) nodes. In such

situations we do not know ahead of time where our MPI ranks will be placed on the

network interconnect, except for the case when we use the entire machine. However, the

architectural design of Mira at ANL differs in many factors. An essential difference for

optimizing network mappings is that on Mira our jobs are allocated in contiguous blocks,

which means that we know the coordinates of each of the MPI ranks before our run starts.

Furthermore, the block is reserved exclusively for a single job or batch script (with minor

negligible exceptions), and routing is zone based.

We concentrate on LA stage of the MFDn as it is the most computationally intensive

part. We present the detailed empirical results in Chapter 5. We run our experiments

up to full machine, which is 48 racks, total of 786, 432 cores. The topological mapping

techniques we propose take specifics and details of Mira supercomputer into account, and

improve overall performance of MFDn significantly compared to the default mapping. We

also explore the use of different MPI call routines, and find combinations that perform

better than the original setup. Additionally, we have developed and validated a network

7Modified from a paper published in The Journal of Concurrency and Computation: Practice and Experience,
2015 [50].

8http://www.cray.com

http://www.cray.com
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model for analyzing these mappings for the different MPI routines. A paper describing

this work is in preparation [51].

1.3 Organization of the thesis

Chapter 1 contains a brief introduction to the application studied in this thesis and a sum-

mary of main contributions. In chapter 2 we give more detailed background on the MFDn

application, the algorithms, and data structures used in it. Chapters 3–5 contain the main

contributions of this work. Specifically, chapter 3 gives details on the initial steps taken to

introduce the GPGPUs into MFDn application. In chapter 4, we present our work on per-

formance analysis of distributed SpMVM techniques. In chapter 5, we present the results of

mapping techniques we propose for IBM BG/Q supercomputer, and extended network model

that validates the results. Finally, chapter 6 contains a summary of the results and conclusions.
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CHAPTER 2. BACKGROUND

In this chapter we briefly describe the main terminology and components used in the MFDn

application. Specifically, in section 2.1 we give a general overview of the MFDn application, in

section 2.2 we provide detailed information on LA, in section 2.3 we describe several commonly

used compressed storage formats for storing sparse matrices along with the most recent storage

format that is used in MFDn, and finally in section 2.4 we give more detailed information on

the execution of LA process in MFDn application.

2.1 Brief overview of MFDn

The Configuration Interaction (CI) approach is a computational approach in quantum me-

chanics for solving the many-body Schrödinger equation as a matrix problem. The lowest

eigenvalues of the matrix correspond to the energies of the low-lying states, and the eigenvec-

tors correspond to wave functions which can be used to calculate additional observables. The

basis is constructed from antisymmetrized Slater Determinants of single-particle states. In the

limit of a complete (but infinite-dimensional) basis the calculations become exact; in practice

the basis is truncated to a finite dimension. In general, the larger the basis, the higher the

accuracy of a calculation for a given system. Thus, the biggest challenge in CI calculations

is that it leads to very large (but very sparse) Hamiltonian matrices, of which one needs to

calculate the lowest eigenvalues and eigenvectors. The dimension grows rapidly with the num-

ber of particles, and is often of the order of 109 or more [65, 42] and for codes that keep the

nonzero matrix elements in-core, the number of nonzero matrix elements is only limited by the

aggregate memory of the available HPC platforms.
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MFDn [62, 8, 42, 41, 7] is a state-of-art software package that performs No-Core CI cal-

culations for atomic nuclei, that is, for self-bound systems consisting of protons and neutrons.

It obtains the lowest eigenvalues and eigenvectors of the sparse symmetric many-body Hamil-

tonian matrix A of size m ×m. It is a hybrid MPI/OpenMP parallel code, developed mainly

at Iowa State University, and written in Fortran; it has been under continuous development

for almost 25 years [66]. The MFDn implementation considered in this thesis, mainly, is the

in-core implementation, i.e., all nonzero matrix elements are stored in-core memory. Although

such implementation is limited by the memory available on the processors, it is faster compared

to the out-of-core counterpart that uses the disk I/O for the matrix construction [67].

A(1,1)

A(2,1) A(2,2)

A(3,2) A(3,3)

A(1,3)

(a) Data distribution.

P1

P2 P3

P4 P5

P6

(b) Process mapping.

Figure 2.1: Distributed symmetric SpMVM data distribution and process mapping. Partition-
ing of the large symmetric matrix, A, among nd(nd + 1)/2 = 6 MPI processes with nd = 3
diagonals.

Since the matrix is symmetric, and available memory is a bottleneck, only half of the nonzero

matrix elements are stored, distributed over all MPI processes. The matrix is partitioned into nd

by nd approximately square submatrices as shown in Figure 2.1a using nd(nd+1)/2 MPI ranks

as shown in Figure 2.1b. The basis is distributed over nd “diagonal MPI ranks” (referred to as

“diagonals”) in such a way that the resulting off-diagonal submatrices all contain approximately

the same number of nonzero matrix elements. On the diagonals we only store half of a diagonal

submatrix, which tends to have less nonzero matrix elements than the off-diagonals. However,

for extremely large and extremely sparse matrices the diagonals may actually have more nonzero

matrix elements than the off-diagonals, potentially leading to significant load-imbalance. One

way to deal with this is by using one (or more) additional MPI process for each diagonal MPI
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rank, referred to as “extras” in MFDn. Alternatively, one can treat the diagonal part of the

matrix separately, distributed over all MPI processes.

Once the basis is distributed, each MPI process locates and evaluates nonzero matrix el-

ements in its submatrix. The distribution of the matrix over the MPI ranks is very well

load-balanced: all off-diagonal MPI ranks have approximately the same workload and memory

usage, but most of the (highly nontrivial) structure of the matrix is lost. For practical pur-

poses, one can consider the submatrices to be unstructured sparse matrices. (Note that the

submatrices themselves are not symmetric, with the exception of the diagonal submatrices.)

MFDn has several major stages:

• The initialization stage consists of reading and processing the input data, followed by

the construction and distribution of the many-body basis. Most of this initialization,

including the basis construction, is performed on the diagonal MPI processes only, and

the information generated is broadcasted to the off-diagonal processes by these diagonal

MPI processes.

• The construction of the matrix A itself, which includes identifying the location of the

nonzero matrix elements and evaluating their values. Initially these nonzero matrix ele-

ments were stored in compressed sparse column (CSC) (also known as CCS), but in the

current version of MFDn, these nonzero matrix elements are stored in the compressed

sparse blocks coordinate (CSB COO) [7] format. Determining each nonzero matrix ele-

ment location and evaluating their values takes up a significant amount of time, up to

about 40% of the entire calculation for representative cases [41].

• In the third stage, MFDn uses an iterative LA to obtain the low-lying eigenvalues and

eigenvectors of the matrix A. Each iteration of the LA is composed of SpMVM followed

by full reorthogonalization. Since only half of the symmetric matrix is stored in-core, one

has to do both an SpMVM and a SpMVMT with the same data structure. This is the most

computationally intensive stage, because typically several hundred iterations are required

for convergence, especially for the eigenvalues beyond the ground state. Efficient hybrid

MPI/OpenMP multicore implementations have been proposed and implemented [8, 7];
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the performance with respect to the non-uniform memory architecture (NUMA) inside a

NUMA machine is studied in [61].

• The final stage in MFDn is composed of using eigenvectors to obtain a set of (user-defined)

observables, which, once converged, can be compared with experimental nuclear structure

data, and used for new predictions in nuclear physics.

2.2 Lanczos Algorithm (LA)

The LA [40, 59] is an iterative method useful for finding the eigenvalues and eigenvectors

of a symmetric matrix. Let A be a large, unstructured, sparse, and symmetric n by n matrix.

For such a matrix there is no easy way of finding eigenvalues. Using LA we can tridiagonalize

it, i.e., find a tridiagonal matrix T such that A = Q ∗ T ∗ QT, and then use various known

efficient algorithms to find eigenvalues and eigenvectors of T . In case of MFDn, the DSTEVX

subroutine provided by LAPACK library [12] is used. In exact arithmetic, the matrix T is

similar to A, so eigenvalues of T are identical to eigenvalues of A. Further, if y is an eigenvector

of T corresponding to eigenvalue λ, i.e., T ∗ y = λ ∗ y, then we get the following equality

A∗ (Q∗ y) = Q∗ (T ∗ y) = Q∗λ∗ y = λ∗ (Q∗ y). So Q∗ y is the eigenvector of A corresponding

to the same eigenvalue λ. Hence finding eigenvalues and eigenvectors of A will be easier,

once tridiagonal matrix T is found. In floating point arithmetic, the eigenvalues of T will be

approximate to egienvalues of A. There are various equivalent forms of the LA, MFDn uses

the one similar to the classical algorithm presented in [40, 59] and shown in algorithm 1.
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Algorithm 1: Classical Lanczos Al-

gorithm
1: Set ||q1|| = 1 and β1 = 0

2: for i = 1, . . . , n do

3: Compute the vector A ∗ qi

4: Set αi = qTi ∗ (A ∗ qi)

5: Set z = A ∗ qi − αi ∗ qi − βi ∗ qi−1

6: Set βi+1 = ||z||

7: if βi+1 == 0 then

8: BREAK

9: else

10: qi+1 = z/βi+1

11: CONTINUE

12: end if

13: end for

Tk =



α1 β2 0 · · · 0

β2 α2 β3
...

0
. . .

. . .
. . . 0

... βk−1 αk−1 βk

0 · · · 0 βk αk



If the process stops at k-steps, the LA will give us a tridiagonal matrix Tk (as shown to

the right of algorithm 1), and the orthonormal vectors q1, . . . , qk. The process will stop at no

more than n steps, because we cannot have n + 1 orthogonal vectors in n-dimensional vector

space. Then we will have the equation A ∗ Qk = Qk ∗ Tk, where the matrix Qk is built using

vectors q1, . . . , qk as columns. So the matrix Qk is n by k and orthogonal, i.e., QT ∗Q = Ik and

Q∗QT = In. Note that all of these hold in the exact arithmetic. However, in practice, as k gets

larger, the matrix Qk looses its orthogonality, since computations are done in finite floating

precision arithmetic [23]. For this reason in MFDn during the LA stage full reorthogonalization

at every iteration is done to preserve the orthogonality [23, 40]. The steps of the LA as

implemented in MFDn are shown in Algorithm 2. Other variants of this algorithm include

partial or selected reorthogonalization, which are currently under investigation for MFDn.

In Algorithm 2, the main loop executes until the algorithm is converged, thus the lines 10

and 11 were intentionally added to check the convergence of the algorithm in order to exit from

do loop earlier. This extra checking step comes at almost no additional cost, but instead helps

to avoid the unnecessary loops. (Note that in MFDn the convergence is checked every 10th

iteration.)
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Algorithm 2: Lanczos algorithm (LA) in

MFDn.

1 procedure serial Lanczos (A,x0);

Input : Sparse symmetric matrix A and initial

vector x0;

Output: Eigenvectors Z and eigenvalues D such

that ‖A× Z − Z ×D‖F is small;

2 x← x0/‖x0‖;

3 X ← (x);

4 while not converged do

5 b← A× x;

6 b← b−X ×XT × b;

7 x← b/‖b‖;

8 X ← (X,x);

9 T ← XT ×A×X;

10 Diagonalize T to obtain (U,D);

11 Check convergence;

12 end

13 Z ← X × U ;

Depending on memory access patterns induced by the application, the SpMVM is typically

the most expensive operation in LA. Many kernels used in this algorithm are shared by several

other iterative methods in sparse linear algebra. For example, Hendrickson et al. [30] use

the closely related Conjugate Gradient (CG) algorithm to evaluate the performance of their

SpMVM implementation.

2.3 Storage formats for sparse matrices

There are a number of schemes proposed for compact storage of sparse matrices’ nonzero

elements. In this section we first briefly describe, in subsection 2.3.1, most common storage

formats used, and also describe the currently used storage format in MFDn, in subsection 2.3.2.

2.3.1 Common Storage Formats

The Coordinate (COO) [59], Compressed Sparse Row (CSR) [15, 59], and the closely related

CCS/CSC storage formats are among the most commonly used storage formats for storing

nonzero matrix elements of sparse matrices. The CSR format allows a straight-forward SpMVM
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implementation in addition to providing a compact memory footprint, and nonzeros of a matrix

row are stored consecutively as a list in memory (val).

Table 2.1: Data used by COO, CSR, and CCS/CSC formats.

M =


3 0 0 45

34.6 0 12 0
0 3.4 0 0
36 0 0 0



val rowind colind rowptr colptr

3 1 1 1 1

34.6 2 1 3 4

36 4 1 5 5

3.4 3 2 6 6

12 2 3 7 7

45 1 4

One maintains an array of pointers (which are simply integer offsets) into the list of nonzeros

in order to mark the beginning of each row (rowptr). An additional index array is used to keep

the column indices of the nonzeros (colind). Nonzero values and column indices are stored in

separate arrays of length equal to the number of nonzeros in the matrix, nnz. The length of the

row pointers array is equal to one more than the matrix dimension, n+ 1. For single-precision

floating-point matrices whose rows and columns can be addressed with 32-bit integers (i.e.,

n ≤ 232 − 1), the storage cost for the CSR format is 8nnz + 4(n+ 1). Whereas CSR stores the

values row by row, the CCS stores the them column by column and uses the val, colptr, and

rowind arrays. Both CSR and CCS use array of pointers, but COO instead stores both row

(rowind) and column (colind) indices of the values (val), with a storage cost of 12nnz using

32-bit integers for the indices, i.e., a memory footprint that is up to 50% larger than CSR or

CSC/CCS. An example is given in Table 2.1 for a matrix with six nonzero elements. (Note

that although the global matrix dimension in MFDn is often too large to be addressed by

32-bit integers, the local submatrices are always such that the rows and columns can easily be

addressed by 32-bit integers.)



www.manaraa.com

14

2.3.2 Compressed Sparse Block Format

There are a number of schemes proposed for compact storage of sparse matrices as described

in section 2.3.1. In case of symmetric distributed memory SpMVM algorithm, as the one used

by LA of MFDn, each process needs to perform the local SpMVM as well as the local SpMVMT

operations. One may reuse matrices stored in the CSR format for the SpMVMT operation by

reinterpreting row pointers and column indices as column pointers and row indices, respectively.

Such an interpretation would correspond to the CCS/CSC representation in which one operates

on columns rather than row sums to implement the SpMVMT operation.

M =

3 0 0 45

34 0 12 0

0 3.4 0 0

36 0 0 0




gval = {3,34,36,3.4,12,45}

grloc = {1,2,2,1,2,1}

gcloc = {1,1,1,2,1,2}

Block # lnnz roffset coffset gptr

(1,1) 2 0 0 0

(2,1) 2 2 0 2

(1,2) 2 0 2 4

(2,2) 0 2 2 6

Figure 2.2: Example of CSB COO format.

In a shared memory parallel

environment, when performing

SpMVMT using the CSR or CC-

S/CSC storage, a possible race

condition between threads has to

be eliminated. The use of atomic

updates or locks has serious neg-

ative effects on execution time.

Another option is to keep a pri-

vate copy of the output vector

for each thread (see Figure 2.5a,

which will be explained in section 2.4). This approach was implemented in the production

version of MFDn prior to 2015, and works reasonably efficient with a small number of threads.

However, it has a memory overhead of O(nt), where t denotes the number of threads, which

becomes problematic on many-core architectures; in addition, the reduction of the private out-

put vectors over the number of threads becomes time consuming. Furthermore, keeping several

private output vector copies may also adversely effect data reuse in cache and therefore result

in worse performance compared to the SpMVM computation [50].

The CSB format [19] provides a solution to this problem. For a given block size parameter

β, CSB nominally partitions an n × n matrix into β × β blocks. When β is on the order of
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√
n, we can address nonzeros within each block by using half the bits needed to index into

the rows and columns of the full matrix (16 bits instead of 32 bits). For β =
√
n, the storage

cost of CSB matches the storage cost of traditional formats such as CSR. Each β × β block is

independently addressable through a 2D array of pointers.

In the works presented in chapters 4 and 5, the MFDn application uses a recently proposed

variant of the CSB format, named CSB COO [7]. In CSB COO (see Figure 2.2), blocks of

(sub)matrices are stored using the COO format. In this implementation the SpMVM operation

is performed by processing the 2D pointer array in rows. Essentially, each thread is assigned a

block row of dimensions β × n in the local sparse matrix vector multiply (the size of this block

row is β × n because all of the blocks in that row are being processed by a single thread). β is

chosen such that there are several more block rows than the number of threads t. To ensure load

balancing among threads, the block rows are dynamically scheduled in an OpenMP parallel

loop. Similarly, SpMVMT is implemented by processing the 2D array of pointers in columns. In

this case, the threads act on block columns of the matrix. Note that there are no race conditions

between the outputs of different threads in SpMVMT. In our experiments (performed during

the work presented in chapter 4) we have observed lower percentage difference between regular

and transpose sparse matrix computation times for parallel symmetric SpMVM implementation

of MFDn using CSB COO than CSC. An example of a matrix M stored using the CSB COO

format is shown in Figure 2.2. Note that for illustration purposes only, the sparse matrix is

divided into square blocks of size β = 2 which is much smaller than usual.

2.4 LA execution in MFDn

The parallel symmetric SpMVM process, which is the main part of the parallel LA imple-

mentation in MFDn, is described in [9]; we will refer to this implementation as “s1” throughout

the thesis. In a distributed memory environment a symmetric SpMVM, b = A ∗ x, can be ac-

complished by distributing the nonzero elements of the large sparse symmetric matrix A and

the vector x as evenly as possible among participating compute nodes. The symmetry of the

matrix A can be leveraged to save memory space by storing only half of the matrix (although

doing so requires both the regular SpMVM and SpMVMT operation to be performed by a single
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A(1,1)

A(2,1)

A(3,1)

A(2,2)

A(3,2)

A(4,2)

A(3,3)

A(4,3)

A(5,3)

A(4,4)

A(5,4)

A(1,4)

A(5,5)

A(2,5)

A(1,5)

(a) Data distribution.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P15

P14

(b) Process mapping.

Figure 2.3: Distributed symmetric SpMVM data distribution and process mapping. Partition-
ing of the large symmetric matrix, A, among nd(nd + 1)/2 = 15 MPI processes with nd = 3
diagonals.

node). For this purpose, in MFDn the sparse matrix A is distributed on a half 2D processor

grid, where only half of the sparse matrix is stored as shown in Figure 2.3a. Each process,

see Figure 2.3b, stores a submatrix of A denoted by A(r,c), containing the nonzeros of that

submatrix in a load-balanced way [41]. The total number of processes participating in SpMVM

is nd(nd + 1)/2, where nd is an odd integer denoting the number of diagonal processes.

Row subcommunicator groups (RSg) are setup to facilitate communications along the rows

of the 2D processor grid. Similarly, column subcommunicator groups (CSg) are used for com-

munications along the columns. For both RSg and CSg diagonal MPI processes act as the roots

of the subcommunicators. Additionally, there are diagonal (DSg) and off-diagonal (OSg) sub-

communicator groups which are composed of diagonal and off-diagonal processes, respectively.

The size of both RSg and CSg is equal to (nd + 1)/2, whereas the size of DSg is nd, and of

OSg is nd(nd − 1)/2. For example, in Figure 2.3, nd = 5 and the number of processors in each

|RSg|=|CSg| = 3.
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x1

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x5

x1 x2 x3 x4 x5

b1

b2

b3

b4

b5

(a) Input vectors, xi, are broadcast among CSg
for SpMVM computations.

x1

x2

x3

x2

x3

x4

x3

x4

x5

x4

x5

x1

x5

x2

x1

x1 x2 x3 x4 x5

(b) Input vectors, xi, are broadcast among RSg
for SpMVMT computations.

b1

b2

b3

b4

b5

(c) Reduction of bi vectors on diagonal pro-
cesses.

b(1,1)

b(2,1)

b(3,1)

b(4,1)

b(5,1)

b(1,2)

b(1,3) b(2,2)

b(2,3) b(3,2)

b(3,3) b(4,2)

b(4,3) b(5,2)

b(5,3)

(d) Partitions of bi vectors stored on each pro-
cess.

Figure 2.4: Distributed symmetric SpMVM process. Initially, xi reside on diagonal processes
only.
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The vector x is partitioned according to the column/row partition of A into nd parts, where

i = 1, 2, . . . , nd as shown in Figures 2.4a and 2.4b. Each xi is initially generated on the ith

diagonal processor. Since we store only half of the symmetric sparse matrix A, the processor

assigned to the (r, c) position of the grid needs to perform two operations on the submatrix

A(r,c), the regular SpMVM and SpMVMT, see Figure 2.5. Therefore the processor at the (r, c)

grid point needs two input vectors: xr from the diagonal processor in its RSg and xc from the

diagonal processor in its CSg.

The parallel LA then proceeds as follows. Initially, diagonal processes generate the x vector,

and then broadcast, MPI BCAST, subsequent xc portions of x along CSg (Figure 2.4a). This

part is done only once before the LA iterations start. Once this xc is received by the CSg

members, all of the MPI processes can now perform the local SpMVM, i.e., br = A(r,c) ∗ xc.

During this stage we do overlapping of communication with computation, by devoting a single

OpenMP thread to broadcast, MPI BCAST, the xr
1 along the RSg members. This part is

shown in Figure 2.5a.

Next, once the SpMVM is done, every MPI process is ready to perform the SpMVMT,i.e.,

bc = (A(r,c))
T ∗ xr. While doing this part diagonal MPI processes can collect the SpMVM

results, using the MPI REDUCE, along the RSg members. This part is also done by a single

OpenMP thread and is overlapped with computation as shown in Figure 2.5b.

Once the SpMVMT is done, we collect the results of SpMVMT on diagonal MPI processes,

and then scatter the resultant bi further among the CSg members as shown in Figures 2.4c

and 2.4d. These chunks bi,j form together a single vector b. This part is a two step operation,

but we use an efficient MPI routine called MPI REDUCE SCATTER. The post-processing

on the vector b (e.g., orthogonalization as required by Lanczos and CG algorithms [59]) is

performed using these chunks bi,j , evenly distributed over all available MPI processes, as shown

in Figure 2.4d. Finally, a gather-operation, MPI ALLGATHERV, after post-processing yields

the distribution of Figure 2.4a for subsequent iterations.

1Note that on diagonal processes xc = xr.
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1 !OMP Parallel Private(i,j,k,tid)

2 !OMP Default(Shared)

3 tid = OMP_GET_THREAD_NUM()

4 wiloc(:, tid) = 0

5 if (tid == 0) then

6 MPI BCAST(vi,...,RSg)

7 endif

8 !OMP Do schedule(dynamic)

9 do j = 1, nloc

10 do i = colptr(j), colptr(j+1)

11 k = rowind(i)

12 wiloc(k,tid) += A(i)*vj(j)

13 enddo

14 enddo

15 !OMP End Do

16 !OMP Do

17 do i=0, nloc

18 wi(i) = SUM(wiloc(i))

19 enddo

20 !OMP End Do

21 !OMP End Parallel

(a) wi = Aijvj that overlaps the broadcast of vi
with the SpMVM computations.

1 !OMP Parallel Private(i,j,k,tid)

2 !OMP Default(Shared)

3 tid = OMP_GET_THREAD_NUM()

4 if (tid == 0) then

5 call MPI REDUCE(wi,...,RSg)

6 endif

7 !OMP Do schedule(dynamic)

8 do j = 1, nloc

9 do i = colptr(j), colptr(j+1)

10 k = rowind(i)

11 wj(j) = wj(j) + A(i)*vi(k)

12 enddo

13 enddo

14 !OMP End Do

15 !OMP End Parallel

(b) wj = AT
ijvi that overlaps the reduction of wi

with the SpMVMT computations.

Figure 2.5: A hybrid OpenMP/MPI implementation of SpMVM and SpMVMT with overlap-
ping of computation and communication as done in MFDn. In this example submatrices are
stored in CCS/CSC format.

In large-scale clusters, the mapping of the processes to the physical processors can signifi-

cantly influence the communication overheads as we will discuss in chapter 5. Because in “s1”

the collective communications along the RSg’s are already overlapped with computations, one

needs to consider efficiently mapping the CSg, since it is not overlapped. In Figure 2.3b, we see

a column-major mapping of the processes onto the half 2D processor grid, which is a heuristic

aimed at optimizing the communications along CSg’s. For this reason and additionally because

we have group sizes of both RSg and CSg equal (as well as almost perfectly equal number of

submatrix nonzero elements on each of the off-diagonal MPI processes) this mapping is called

load-balanced column-major (LBCM) [9].
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The LBCM heuristic is effective for the Cray supercomputer architectures, because Cray’s

scheduler does a best effort in placing consecutively ranked MPI processes onto nearby physical

processors [9]. However, as we demonstrate in chapter 5, this mapping is generally not efficient

on Mira, which has a 5D torus interconnect and uses a block-based job scheduler.

Finally, as we have already explained in some cases we might have a situation where the

maximum number of nonzero submatrix elements on diagonal processes is more than the maxi-

mum number of nonzero submatrix elements on any of the off-diagonal processes. In these cases

MFDn introduces nextra number of MPI helper processes for each of the diagonal processes to

divide the local computation, and thus we will need a total of nd((nd + 1)/2 + nextra) MPI

processes. Also, in this case we will have |RSg|=(nd + 1)/2 and |CSg|=(nd + 1)/2 + nextra.

Alternatively, we can deal with the diagonal part of the matrix separately, and distribute the

excess nonzero matrix elements evenly among the CSg members. The latter treatment has

recently been developed, partly motivated by the communication overhead data presented in

chapter 5. In either case we will explicitly mention in the text if any of these two approaches

are under consideration.
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CHAPTER 3. INTRODUCTION OF GPGPUs IN AB INITIO

NUCLEAR PHYSICS CALCULATIONS

In this chapter we present the main results of our work 1 targeted for the acceleration of

MFDn using GPGPUs [52]. Specifically, the chapter is organized as follows. Section 3.1 intro-

duces the problem under consideration, and section 3.2 gives a brief overview of the GPGPU

programming. Section 3.3 presents MFDn tasks to be executed on GPGPUs and the calcula-

tions needed to construct the matrix elements, which have been ported to GPGPUs. Section

3.4 discusses the main features adapted for better utilization of the GPGPUs. Finally, section

3.5 presents and discusses the experimental results, while section 3.6 concludes the findings.

3.1 Introduction

Determining each matrix element location and value in MFDn takes a significant amount

of time, on the order of 20% to 40% of the entire CI calculation in representative cases [42].

Furthermore, this costly procedure has highly parallel steps, i.e., each matrix element may be

generated independently, and thus should yield good performance on the “single instruction,

multiple data” (SIMD)-type highly parallel accelerators, such as GPGPUs.

GPGPUs have been available for general-purpose programming for several years already,

and exhibit performance increases in comparison with CPU-only codes, given intelligent GPGPU

memory accesses and usage and a high degree of fine-grain parallelism. In the case of CI com-

putations, such as the ab initio nuclear structure application MFDn, hundreds of GPGPU

threads may participate in the generation of Hamiltonian matrix elements in parallel. How-

ever, to achieve and sustain a high degree of parallelism, the serial construction procedure

1Modified from a paper published in Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International [52].
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has to be redesigned for GPGPUs, and a multithreaded parallel programming model, such as

Compute Unified Device Architecture (CUDA) from NVIDIA2, used to implement the new de-

sign. This chapter outlines this design and implementation of the Hamiltonian matrix element

construction and presents initial results as well as notes on the efficiency of GPGPU utilization.

3.2 CUDA Programming Model

One of the significant differences between GPGPU and CPU architectures is in the number

of transistors dedicated to data computing [47]. GPGPUs contain hundreds of cores and support

a highly multithreaded programming model, providing an inherently parallel computational

environment. The CUDA framework provides easy access to usage of the GPGPUs and enables

writing multithreaded programs without the knowledge of the architectural design, internal

organizational specifics of the GPGPUs, and a low-level graphics API. With CUDA, it is now

possible to program the GPGPUs using high-level programming languages, such as C. A CUDA

kernel is a function that is executed on the GPGPU in a single-instruction multiple-thread

manner using a large number of parallel threads. The main difference between the functions in

high-level programming languages and the kernels is that the kernels are executed in groups of

blocks in parallel across many cores of the GPGPU. In general, the top-down hierarchy for the

thread is as follows: Grids are composed of blocks, which are themselves composed of threads.

To arrange a GPGPU computation, the user specifies the number of threads per block and

number of blocks per grid.

There are different types of memory spaces provided to threads in CUDA, such as read-

write and read-only. Threads are able to access these memories throughout the execution.

Every thread can read-write to per-thread local memory (as well as registers); each thread in

a block is able to use the shared memory with the lifetime of the block ; and all the threads

can access the global memory, which can be as large as several gigabytes in the latest NVIDIA

GPGPUs. On the other hand, the read-only memories are termed constant and texture, which

can be accessed by all threads, i.e., per-grid. The constants and kernel arguments are stored

in constant memory, whereas texture memory is optimized for 2D spatial access pattern.

2http://www.nvidia.com

http://www.nvidia.com
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3.3 MFDn Tasks to Be Executed on GPGPUs

MFDn’s major steps have been presented in detail in chapter 2. The construction of the

Hamiltonian matrix involves a large number of independent calculations for its elements, and

as such is an obvious candidate for parallelization; the GPGPU acceleration of that stage is

the subject of this chapter. The LA’s iterations are computationally intensive and memory-

bound, which cannot be broken down into independent calculations nearly as easily. The

implementation of a block-algorithm as an alternative to the iterative LA is currently under

investigation, and this may eventually also lead to a GPGPU implementation of the actual

diagonalization phase. Also, with a highly efficient GPGPU implementation of the matrix

construction it may be possible to perform the matrix vector multiplications ‘on the fly’, without

explicitly storing all nonzero matrix elements in-core, thus reducing the memory footprint

significantly.

3.3.1 Closer look at the Hamiltonian matrix element evaluation

To reduce the memory footprint in the beginning of the second stage, see chapter 2, of

the MFDn execution, a new procedure, termed ME3M, has been elaborated and implemented

recently [58, 57, 54, 43] for 3-body interactions. MFDn uses a basis called m-scheme, which is

convenient to use but memory-intensive; the ME3M procedure stores the 3-body interactions

in a more compressed basis by making use of special properties of adding angular momentum

and isospin in quantum mechanics. A basis transformation algorithm is executed in order

to generate the 3-body m-scheme matrix elements as needed for a given many-body matrix

element. This compressed basis is denoted as coupled-JT [58, 57]. The ME3M procedure

allows MFDn to request individual 3-body m-scheme matrix elements without storing the

entire, possibly quite large, m-scheme 3-body matrix, to construct a many-particle Hamiltonian

matrix element. For example, a 3-body matrix of size 100GB using the m-scheme basis would

be equivalent to a matrix only around 2GB in size in the coupled-JT basis, amounting to

significant memory savings.
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The difference between the m-scheme and coupled-JT bases is in how they represent isospin

(a quantity that has to do with whether a particle is a proton or a neutron) and angular

momentum. The m-scheme basis specifies the exact angular momentum and isospin of each

particle separately, while the coupled-JT basis adds all three angular momenta together and

specifies the totals; likewise for isospin. The latter 3-body matrix representation is much

more compact and, since the underlying 3-particle interaction depends only on total angular

momentum and isospin, no information is lost in this “compression”.

3.3.2 Matrix structure

Transforming a 3-body matrix between the coupled-JT scheme and the m-scheme is ac-

complished through a change-of-basis calculation. In such a change-of-basis calculation each

element in the new basis is a linear combination of elements from the old basis, weighted by

various projections between the old and the new basis vectors that specify the matrix row and

column labels in the respective basis. These projections define transformation coefficients that

go into the matrix elements of a matrix D used in the change-of-basis equation:

A′ = DTAD, (3.1)

where each element of the D matrix is developed from a sequence of additions of angular

momenta and isospins. In this case, the coupled-JT basis is much smaller than the resulting

m-scheme basis, so the matrix multiplication would look like in Figure 3.1.

An m-scheme matrix element is specified by two m-scheme basis vectors, each of which

corresponds to a set of coupled-JT basis vectors, per physics considerations of the angular mo-

menta and isospins. Together, these sets specify a region of the coupled-JT matrix. This region

is the one that contributes to the m-scheme element in question. An m-scheme element, then,

can be calculated from a sum over coupled-JT elements, each multiplied by the appropriate

projections as shown in Figure 3.2.

MFDn requests elements one-by-one from the generated m-scheme matrix in the process

of constructing the many-body Hamiltonian matrix to be diagonalized. The generated 3-body

m-scheme matrix is never actually stored as a full matrix since ME3M generates necessary
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DT

A D

A' =

matrices of projections

input coupled-JT matrix

output m-scheme matrix

coupled-JT indices

m-scheme indices

Figure 3.1: The coupled-JT to m-scheme transformation.

= black indicates matrix 
elements involved in 
the calculation

Figure 3.2: The m-scheme element calculation.

m-scheme matrix elements as needed. Note that only a small subset of coupled-JT matrix

elements actually end up contributing to the resulting m-scheme matrix element. The CPU-

based implementation of ME3M represents the coupled-JT matrix intelligently, so that the

contributing elements can be easily accessed [57].

A 3-body matrix element can be indexed by two vectors from the basis in which the matrix

is constructed. These vectors will be referred to as the row state and the column state. Each

row or column state has three single-particle states (SPSs). Certain indices for each SPS

remain fixed when transforming between the coupled-JT and the m-scheme bases. These fixed

SPS identifiers (quantum numbers) are n (the radial quantum number), l (the orbital quantum

number) and j (the total SPS angular momentum). The set nlj serves then as a useful identifier

for the immutable aspects of each of the three SPSs within each row state or column state.

Because of these immutable features, these two matrices (the coupled-JT and the one generated

from the coupled-JT to m-scheme transformation) are both divided into blocks (see Figure 3.3),



www.manaraa.com

26

1
2
3
4
5
6
7

0 1 2 3 4

a b
dc

e

The entire input matrix is divided into nlj-blocks, 
signified by the small rectangles in the square 
matrix below.  This is a schematic representation 
only; a real matrix would have far more nlj-blocks. 

Each nlj-block is divided by the possible total angular 
momentum values of the first two SPSs in the row and 
column states.

1 2 3

1

2

3

4

5

Angular momentum blocks are further 
divided when the third SPS angular 
momenta are added in, forming a total 
angular momentum index; blocks are 
diagonal in this index.  

outer loops

inner loop

Blocks are subdivided by 
isospin in a similar fashion; 
each isospin block has the 
same structure, and actual 
numbers are stored at this 
level. 

1
2

1
2

1
2

1
2

3
2

1
2

1
2

1
2

1
2

3
2

Figure 3.3: Matrix structure.

such that each block is defined by three nlj sets for its row states and three nlj sets for its

column states. Each block of this type is referred to as an nlj-block. The transformations

do not mix blocks, i.e, a block of the A′ matrix from equation 3.1 can be constructed entirely

from the elements of the block in the coupled-JT matrix A having the same three row state

nlj indices and the same three column state nlj indices as the resulting block in matrix A′.

Since the j indices of a row state specify the angular momentum magnitudes of its SPSs, and

likewise for a column state, each nlj block has a definite total angular momentum for each of

the three row SPSs and each of the three column SPSs.

Inside each nlj block for the first two column-state SPSs, the total angular momentum

j-values are added to form a new column index, and likewise for the row state. Note that

adding two angular momenta produces a set of total angular momenta. This new index divides

the nlj block into subblocks, each of which has a definite total angular momentum for the first

two column SPSs and for the first two row SPSs. These subblocks are subdivided by another

angular momentum index; the column state angular momentum of the subblock is added to the

third column state SPS total angular momentum to produce a final total angular momentum
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index, and likewise for the row state. Thus, each block at this level has a definite final total

angular momentum for the column state and for the row state. Note that coupled-JT matrix

elements are zero if their column and row states have different final total angular momenta;

this means that nonzero elements occur in diagonal regions within the nlj block.

Finally, each block with definite total angular momenta is subdivided twice by adding

isospin the same way angular momentum was added in previous divisions. Isospin works math-

ematically the same way as angular momentum does. Here, only protons and neutrons are

considered, i.e., particles with isospin 1/2, and isospin projection +1/2 and −1/2, respectively.

Therefore, each isospin block has the same form, with zero elements in the same locations.

There are only five nonzero elements per isospin block. To implement the isospin basis trans-

formations, it is more efficient to unroll the corresponding loops and hard-code which matrix

elements to add.

3.3.3 Basis Transformation Algorithm

The entire coupled-JT matrix is stored as a flat series of sets of five floating point values, as

shown in Figure 3.3. Looping over the block indices as described above references the nonzero

sets in a predictable sequence, so if the code accesses them in that sequence it is sufficient to

store only the nonzero sets. Since one A′ matrix element is constructed entirely from a single

nlj block, the algorithm only needs to iterate over one block; the locations of nlj blocks within

the flattened coupled-JT matrix are stored in an array.

The heart of the coupled-JT code, as implemented in the ME3M procedure, is a set of

three nested for-loops. The bounds of the first and second loops are determined by the m-

scheme element requested. The innermost loop bounds, however, depend on the position in

the first two loops. Inside the inner for-loop there is a linear combination of five coupled-JT

matrix elements, each weighted by the product of several so called Clebsch-Gordan coefficients

(CG-coefficients). These CG-coefficients are real-valued quantities whose products form the

matrix elements of the D-matrix, shown in Figure 3.1. A lookup table for the CG-coefficients

is generated at initialization.
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Algorithm 3: To transform coupled-JT to

m-scheme
L1← determineFirstLoopBound

L2← determineSecondLoopBound

for 1 to L1 do

for 1 to L2 do

L3← determineInnerLoopBound

for 1 to L3 do

add input matrix elements weighted by CGs

end for

accumulate inner loop sum weighted by a CG

end for

accumulate second loop sum weighted by a CG

end for

return accumulated sum

The loop structure iterates over all the

input coupled-JT total angular momen-

tum arrangements, and the linear com-

bination inside the innermost loop is a

sum over the coupled-JT total isospin ar-

rangements. The output of the algorithm

is, thus, a linear combination of all the

contributing coupled-JT matrix elements.

Contributions are summed within each

loop and then added to the sum in the

next-higher loop. This implementation al-

lows an entire loop to be efficiently multiplied by the same CG-coefficient. Algorithm 3 shows

the pseudocode for the transformation process. Taken as a whole, the loop structure can be

thought of as a set of J-loops over total angular momentum and a set of unrolled T -loops

over total isospin, with one J-loop and one T -loop for each m-scheme basis vector, and several

sub-loops over component couplings leading to the total coupling.

The coupled-JT matrix is stored in such a way that its elements will always be accessed

sequentially for a given generated element and its respective for-loops. Thus, once the first

coupled-JT matrix element is located, one may efficiently access all the needed elements for

that generated matrix element. The first coupled-JT element is determined from a set of

conditional statements and a look-up table that relates indices known in m-scheme to a flat

coupled-JT matrix index.

3.4 GPGPU Implementation

The MFDn many-body Hamiltonian is partitioned across multiple processors, as it is shown

in Figure 2.3, where every processor needs more or less random access to the basis transfor-

mation results (i.e., nonzeros of matrix A′ in equation 3.1). The full set of m-scheme 3-body

matrix elements may quickly grow over 100GB, which is not currently practical to process

without basis compression considerations, such as those provided by the ME3M procedure.
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CUDA was used for generating the m-scheme 3-body matrix elements with GPGPUs,

NVIDIA Tesla C2050, code-named Fermi, from the information provided by the coupled-JT

3-body matrix elements. This procedure, as seen in Algorithm 3, is easily parallelizable in a

multithreaded fashion: Each m-scheme 3-body matrix element is calculated by its own CUDA

thread, and the CUDA kernel is invoked over many elements at once. The entire Algorithm 3

was put into the kernel, without modifying it significantly, and given a wrapper function to

transfer chunks of matrix element requests in the form of sets of SPS indices to the GPGPU and

retrieve a corresponding group of calculated 3-body m-scheme matrix elements from the device.

The m-scheme SPSs are specified by the nlj set of indices as well as by the m and t values,

which are the angular momentum and isospin projection quantum numbers. These five indices

are all flattened into one linear SPS index. An m-scheme 3-body matrix element can then be

specified by a set of six linear SPS indices. The uniformly-sized chunks of these six-index sets

are transferred to the GPGPU. The size of each chunk will influence the performance of the

GPGPU implementation as will be shown in Section 3.5.

Most of the multidimensional arrays were flattened to be referenced only by a single index

because of the efficiency and convenience while transferring these data to and from GPGPU.

The six-dimensional array relating the six nlj indices of an nlj block to the flattened index

of the first coupled-JT 3-body matrix element in that block is not straightforward to flatten

since the orderings of the six linear nlj indices are not strongly restricted, and the value of

one can control the range of another (referred to as “jagged” linear nlj indices). Also, each

linear SPS index may run as high as 10, 000 or more in realistic applications. Thus, this array

may be flattened only with a significant computation overhead resulting from the multiple

nested summations needed to map a single index to a multidimensional jagged-array index.

Furthermore, transferring this jagged array to the GPGPU involves an exorbitant number of

very small and inefficient memory copies. In the initial GPGPU implementation, this six-

dimensional array was not transferred to the GPGPU but, instead, was processed on the CPU

to precompute only the required part to be transferred to the GPGPU along with the sets

of the 3-body matrix element requests. Subsequent implementations transferred the entire

array to the GPGPU and referenced it with six indices, as in the CPU code. This modification
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produced better results by a factor of about 4.5x than in the initial attempt without considering

the jagged array transfer time, which occurs only once, during ME3M initialization. The CG-

coefficients, index structures, and the associated matrix element values are computed using the

(mostly unmodified) original implementation of the ME3M procedure and then transferred to

the GPGPU during the initialization step.

The minimization of the number of requests to the global GPGPU memory on a per-thread

basis was performed as much as possible. Also, the use of the constant GPGPU memory was

considered for some arrays that are accessed by the GPGPU threads in a read-only fashion

and that may fit in this memory. Unfortunately, this attempt did not improve significantly the

overall runtime of the kernel. The GPGPU consists of multiple streaming multiprocessor (SM),

specifically in our case we had 14 of them, each with 32 cores. Each SM of the GPGPU used

has 64KB of on-chip memory (shared memory + L1 cache). These 64KB can be configured as

48 + 16KB or 16 + 48KB between shared memory and L1 cache. All of the threads in a thread

block will run on a single SM, which will schedule the threads in groups of 32 parallel threads

called warps. When fine-tuning the kernel performance, preference for a larger L1 cache size

for the kernel improved the GPGPU execution time on average by about 5.15% for the smaller

test case considered and by about 8.46% for the larger one.

To summarize, the experimental results shown in Section 3.5 do not use the constant

GPGPU memory but set the preference to use larger L1 cache for all the GPGPU runs. As

per the CUDA programming model, the space of requested elements is divided into blocks,

which are subdivided into threads, with one thread per requested element. Using the CUDA

occupancy calculator3, the highest occupancy was attained for several block sizes, and almost

all the possible combinations of width and height for these block sizes were tested. For the

experiments presented in Section 3.5, the block size is taken as having 64 threads (64 in width

and 1 in height), which has given the best timings, and a grid of blocks has as many columns as

are required to accommodate the number of elements requested. Several different variations of

grid dimensions were tested as well, but these did not show significant decrease in the execution

time.

3https://developer.nvidia.com/category/zone/cuda-zone

https://developer.nvidia.com/category/zone/cuda-zone
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3.5 Experimental Results

The GPGPU node cluster Dirac at NERSC was used for all the test results. Specifically, an

NVIDIA Tesla C2050, code-named Fermi, with 3GB memory and 448 parallel CUDA cores was

used. Each of the nodes has two Intel 5530 2.4 GHz QPI quad-core Nehalem processors. The

Dirac computing platform was used both for the GPGPU code timings and for the comparison

with the CPU multithreaded version.

The experiments reflect only a particular part of the MFDn calculation, namely the trans-

formation from the input coupled-JT 3-body matrix elements to the m-scheme 3-body matrix

elements needed in the construction of the many-body Hamiltonian matrix. The algorithm used

for the GPGPU code was taken directly from the CPU version; and, for a fair comparison, the

GPGPU performance optimizations, such as flattening of various arrays, were retrofitted to

the CPU version. In other words, the GPGPU and CPU versions compared here differ only in

the particulars of the programming model used to execute on multithreaded CPU and GPGPU

versions on Dirac.

Depending on the desired accuracy of the MFDn calculation, 3-body matrices of differ-

ent sizes are used. The largest test cases considered here employ 3-body matrices with about

456, 000 elements requiring about 1.7MB of main memory. Note that the present tests were

conducted in “stand-alone” mode, i.e., without their integration into the actual MFDn code.

Instead, the proposed GPGPU implementation of the basis transformation algorithm was com-

pared against a CPU-based multicore implementation of the ME3M procedure. Such stand-

alone testing allows a better investigation of the effects of the GPGPU parallelization in timing

comparisons with the CPU implementation. In order to integrate the stand-alone test code

into MFDn additional issues had to be resolved [55].

The initial test case contains a 3-body matrix consisting of 1 million elements, which were

generated from the beginning of the m-scheme SPS basis, and uses elements with SPS indices

in the 0–20 range, inclusive. (Recall that each m-scheme element is indexed by six linear SPS

indices.) This range generally involves very short decoupling loops and a correspondingly small

amount of computation. Next, the tests were done with the single-particle indices in the 20–40
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range, inclusive, which yielded a more intensive computation, without increasing the memory

transfer amount between CPU and GPGPU. This larger test case showed better performance,

as expected.
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Figure 3.4: Performance comparison between GPGPU and CPU runs.

Since the allocation, initialization, transfer, and cleanup stages for the index structures and

coupled-JT matrix element values happen only once, they were not timed and are not shown

here. On the other hand, the results do include the times of sending the m-scheme matrix

element request to GPGPU and of transferring the calculated matrix elements back to CPU.

For each test case and different granularity of matrix element processing, the rate of matrix

element generation, as matrix elements-per-second, and its speedup as compared with the CPU-

based code are shown in Figures 3.4 and 3.5, respectively. The results presented are for chunk

sizes in the range from 100 to 1 million and are the averages of five runs. The CPU timings

shown in Figures 3.4 and 3.5 are with eight OpenMP threads, which is the maximum number

of CPU threads allowed without oversubscription. It was observed experimentally that the

runs using eight OpenMP threads have achieved a 2x speedups as compared with the four-

threaded ones already at the chunk sizes of 36, 517 and 8, 659 for the 0–20 and 20–40 test cases,

respectively, and continued to grow with a slightly superlinear speedup tendency as the chunk

sizes approach 1 million.

The GPGPU code gave a performance improvement of almost 4.4x over the CPU code for

the 0–20 test case (Figure 3.5a) and almost 10.8x for the more computationally intensive 20–40

test case (Figure 3.5b). Notice that the speedup achieved by GPGPU increases quite slowly up
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Figure 3.5: Speedup with respect to the CPU execution when different chunk sizes are used.

to a certain chunk size (about 365 and 177 elements per chunk, for the 0–20 and 20–40 cases,

respectively). In conjunction with the timing data, hardware counters provided an estimate of

the degree to which the code is memory-bottlenecked. Disregarding the transfers of element

requests to the GPGPU and calculated elements back from it, which take time but do not

involve significant calculation, the GPGPU ran at approximately 3% of its peak FLOPS for

the 0–20 test case and approximately 6% of its peak FLOPS for the 20–40 test case.

3.6 Conclusions

This chapter tackles a challenge currently faced by the MFDn code: The matrix sizes of

the input 3-body matrix elements become unmanageable, so new approaches to obtain the

m-scheme 3-body matrix elements are required. One approach is to read the 3-body matrix

elements in coupled-JT format, which enables MFDn to obtain the same amount of informa-

tion as in the (memory-intensive) m-scheme but in a much more memory-efficient manner.

This approach is well-parallelizable and has been adapted for GPGPUs. Initial experiences

of porting the coupled-JT to m-scheme transformation to GPGPU using CUDA have been

presented in this chapter and already show promising results in the range of four-to-ten fold

improvements. Further improvements and analysis are needed, however, for both the CPU and

GPGPU implementations. For example, the GPGPU code may be able to take advantage of

the texture memory and multiple streams.
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We have incorporated enhanced GPGPU implementation [52] described in this chpater into

MFDn, and full production runs on Titan have been made. Titan is a, Cray XK7, super-

computer located at ORNL, with a hybrid architecture: Each compute node contains both a

conventional CPU and a GPGPU accelerator. Each CPU processor of Titan is a 16-core 2.2GHz

AMD Opteron 6274 (Interlagos) processor with 32 GB of RAM. The nodes are connected with

Gemini interconnect. In addition, each of the physical compute nodes of Titan contain an

NVIDIA Tesla K20 GPGPU accelerator (which is based on NVIDIA’s Kepler architecture)

with 6GB of DDR5 memory. We have obtained speedup of approximately 2.2x− 2.7x for the

matrix construction stage and 1.2x − 1.4x for the entire run [55]. Physics results using the

GPGPU-enhanced version of MFDn for large-scale production runs on Titan have also been

published in [54], and a follow-up paper to [54] is in preparation.
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CHAPTER 4. PERFORMANCE ANALYSIS OF DISTRIBUTED

SPMVM ALGORITHMS FOR MULTI-CORE ARCHITECTURES

This chapter presents results of our work 1 on performance analysis of both symmetric and

non-symmetric parallel SpMVM implementations [50]. Here, in chapter 4, we give a brief in-

troduction to the work performed in section 4.1 and in section 4.2 we discuss related literature.

Next, in section 4.3, we give brief details of the non-symmetric parallel (general distributed)

SpMVM methods presented in literature. In Section 4.4 we outline the network load model

that is used to assess the load incurred on the interconnection network by the SpMVM imple-

mentations. Finally, experimental results and their analyses are presented in Section 4.5 and

Section 4.6 concludes the chapter.

4.1 Introduction

Sparse matrices arise in various contexts in scientific computing. SpMVM forms the main

kernel in iterative methods used for solving large systems of linear equations or eigenvalue

problems. The focus of this chapter is on analyzing the performance of distributed memory

SpMVM algorithms for symmetric matrices with irregular sparsity patterns. Such matrices

arise in quantum many-body calculations and graph analytics among others. For example,

iterative eigensolvers are used to extract the few lowest eigenpairs of extremely large symmetric

sparse matrices that correspond to the ground state and low-lying excited states of nuclei [41].

Spectral techniques are also widely used in the analysis of large-scale graphs [25, 45, 11]. The

results presented may also be useful in other problems where the effort to identify and exploit

the underlying sparsity structure is prohibitively high.

1Modified from a paper published in The Journal of Concurrency and Computation: Practice and Experience,
2015 [50].
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Since our focus is on matrices with irregular sparsity patterns, we require a good load-

balance through simple matrix decomposition schemes, such as 1D or 2D partitioning of the

matrix. Ogielski and Aiello [48] have shown that, by randomly permuting the rows and columns

of sufficiently large matrices with bounded number of nonzeros in each row and column, one can

achieve good load balance with high probability. Therefore, throughout the chapter, we assume

that the matrix has already been constructed and distributed in a load-balanced way among

different processing units. As described in the literature review section (Section 4.2), several

algorithms have been reported for scalable SpMVM on massively parallel architectures under

similar assumptions [10, 27, 36, 39, 38, 30, 60]. Our target platforms are distributed memory

multi-core machines, in which compute nodes are connected via a high-speed communication

network. Within each node, several processing units (or cores) share a common pool of memory.

The ideas we discuss are also applicable to more sophisticated multi-core systems.

The contributions of this chapter can be summarized as follows:

• Efficient implementations of previously reported SpMVM algorithms on multi-core archi-

tectures by leveraging the hybrid MPI+OpenMP paradigm;

• Performance analysis of a recently proposed distributed symmetric SpMVM algorithm [9]

against these efficient implementations [39, 38] under various conditions;

• Comparison of the different SpMVM implementations in terms of the incurred data move-

ment overheads using the network load model presented in [9];

• Extension of a network load model to a Dragonfly network topology and evaluation of

the effectiveness of a topology-aware mapping heuristic on clusters with 3D Torus and

Dragonfly interconnects.

As we move towards the exascale era, the main concerns for high-end computing systems can

be listed as: 1. the increasing gap between the computational power and the communication

capabilities [13]; 2. the decreasing amount of memory space per core [34]; and 3. energy

consumption of which data movement overheads account for a significant fraction [13]. In this

study, we show the detailed performance analysis of a distributed SpMVM algorithm presented



www.manaraa.com

37

in [9] which can achieve excellent scalability through effective overlapping of expensive collective

communication operations on multi-core architectures to address the concern number 1 stated

above. In addition, this algorithm exploits the symmetry of the underlying matrices to save

valuable memory space by storing only half of the sparse matrix in distributed memory [62]

and, thus, addresses the concern number 2. We also show that this approach is able to achieve

better utilization of resources and that total data movement overheads are significantly reduced,

which, in turn, may contribute to energy savings; thereby addressing the concern number 3 of

computing at the exascale. For detailed implementation of this algorithm, called “s1”, please

refer to section 2.4.

4.2 Literature review

Aliaga and Hernandez [10] present implementations of different parallel algorithms for ma-

trix vector multiplication for both symmetric and non-symmetric cases of sparse and dense

matrices. The authors study the load balance among processors using different methods based

on ordering, distribution, and adjustment. The data is distributed among processors for both

symmetric and non-symmetric cases in block rows or columns. Geus and Rölin [27] present

fast parallel SpMVM on symmetric matrices, too. These authors describe optimization tech-

niques, such as software pipelining, register blocking, and matrix reordering on a single node to

accelerate SpMVM computations. They present the implementation of these techniques (with

the exception of register blocking) in a parallel environment using message passing. Exploiting

the matrix symmetry, only the lower triangles of the matrices were stored, and the data were

distributed among the processes by block-rows, i.e., 1D decomposition. Actual parallel multi-

plication was performed using three different choices, one without and two with latency hiding.

Another parallel symmetric SpMVM algorithm was presented by Krotkiewski and Dabrowski

[36] with several optimizations based on matrix reordering, manual prefetching, and blocking

as well as overlapping communication and computation using MPI and POSIX threads.

Lewis and van de Geijn [39] evaluate several distributed memory matrix-vector multipli-

cation algorithms for a parallel implementation of the CG method involving sparse matrices

from unstructured grid computations. They show that 1D decomposition schemes scale poorly
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in general and present a 2D decomposition that scales better than other 2D methods on a

hypercube architecture. Lewis et al. [38] extend this 2D decomposition to mesh architectures

and mention a possibility of overlapping communication and computation for better scalabil-

ity but provide no details about implementation or its performance. Hendrickson et al. [30]

have developed an efficient parallel algorithm for matrix-vector multiplication on hypercube

architectures with a focus on dense or unstructured sparse matrices using overlapping of com-

munication and computation. Schubert et al. [60] present explicit communication overlap in

hybrid MPI+OpenMP parallel sparse matrix vector multiplication, which they extended [35]

to MPI and GPGPUs. Popovyan [53] has described a parallelization of Lanczos type algo-

rithms on modern architectures using the same technique as in [30], but the author reports no

performance improvement as a result of communication and computation overlapping on a 3D

Torus architecture.

4.3 Distributed SpMVM Methods for Multi-core Architectures

In this section, we present the different distributed memory SpMVM implementations con-

sidered throughout the chapter. Since, we have briefly described the distributed symmetric

SpMVM algorithm [9] in chapter 2, specifically in section 2.4, in this section we present effi-

cient implementations on modern multi-core architectures for some general (non-symmetric)

SpMVM methods reported in the literature. Throughout this section, we denote the SpMVM

operation by b = A ∗ x, where A is a large symmetric sparse matrix; x, and b are (dense)

vectors.

Specifically, in this section, we briefly describe some previously reported distributed SpMVM

approaches [39, 38, 26, 30, 56] and present the techniques we used for achieving their efficient

implementations on modern multi-core architectures. The total communication volume of

1D partitioning schemes (such as those reported in [39, 56]) scale linearly with the problem

dimension and the number of processors. Therefore, we consider only 2D partitioning based

methods. So the total number of processes needed is n2
d. All approaches described here are based

on the data distribution shown in Figure 4.1a and use column-major ordering of processes on

the 2D grid (see Figure 4.1b) as discussed in section 2.4. Again two different subcommunicators,
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as explained in chapter 2, RSg and CSg, are created to facilitate communications along row

and columns of the 2D processor grid.
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Figure 4.1: General distributed SpMVM data distribution and process mapping.

4.3.1 Approach a1:

Our base implementation is the “Row-Fan-In, Column-Fan-Out” method described in [39].

In this method, the initial xi vectors reside on the diagonal processes and they are broadcast

among the CSg’s as shown in Figure 4.2a.
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(b) Reduction of the local SpMVM results at
the diagonal processor along each of the RSg.

Figure 4.2: Approach “a1”: A simple distributed memory SpMVM method.
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Once the input vectors are ready, each process performs the local SpMVM computations on

its submatrix A(r,c) (Figure 4.2b). Then the partial results are reduced at the diagonal processes

in each RSg to produce the final bi vectors as shown in Figure 2.4c. Finally, the bi’s are scattered

(using MPI SCATTER) evenly among the nd processes in each CSg for the orthogonalization

procedure. Figure 4.3 shows the distribution of the b vector before orthogonalization.
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Figure 4.3: Data distribution for the b vector

after MPI SCATTER among CSg’s.

As in Section 2.4, communications along

CSg are also optimized by combining the

MPI GATHER after the orthogonalization

and the MPI BCAST of the next iteration

into a single MPI ALLGATHER call. This

optimization is also applied to the subsequent

approaches to be discussed below which are

essentially variants of “a1”. However, note in

this case that the MPI REDUCE SCATTER

optimization (as used in “s1” approach) is not

possible because reductions and scatters take

place in different subcommunicators.

4.3.2 Approach a2:

A hybrid parallel implementation of the approach “a1” on multi-core architectures opens

possibilities for efficient overlapping of communication and computations [38]. As mentioned in

Section 2.4, the column-major ordering of processes on the 2D processor grid yields a topology-

optimized CSg. Therefore the main focus should be on overlapping the potentially expensive

communications over RSg’s.

The main observation behind the approach “a2” is that we propose the commonly used (se-

rial) SpMVM algorithms using the sparse matrix storage formats (described in Section 2.3.2),

the elements of the result vector bi can be generated incrementally. Therefore to start the

reduction of bi, there is no need to wait until all local computations are finished as in “a1”.

Instead, we designate a communication thread responsible for the reduction of “ready” bi ele-
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ments, while other threads continue working on SpMVM computations. We perform reductions

in small chunks to reduce messaging overheads.
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Figure 4.4: Approach “a2”: Example of block-row subdivision among processes of the first RSg
and reduction on first diagonal process.

We illustrate this idea in Figure 4.4. Here the first RSg consists of processes P1, P6, P11, P16,

and P21. In this approach, local SpMVM computations are performed in nd phases. In phase

j, the jth chunk of the result vector b(1,j), j = 1, . . . , nd, is computed. The jth chunk is reduced

over the RSg in the phase j + 1.

1 do p=1, nd inside parallel region

2 Get/compute bounds for partial SpMVM

3 if (p.eq.1) then

4 Do partial SpMVM in parallel

5 else

6 Do partial SpMVM in parallel

7 Use one thread for communication

8 end if

9 end do

10 Do the last communication

Figure 4.5: Pseudocode for overlapping of communication and computation in SpMVM using
local work subdivision and multi-threading in a 2D grid process.



www.manaraa.com

42

For example, after the first phase is completed, the designated communication thread per-

forms the reduction of b(1,1), while other threads start the SpMVM computations of the second

phase to compute b(1,2). The final b(1,5) chunk is reduced without any overlaps. As in “a1”,

bi result vectors are collected at the diagonal processes of their respective RSg’s (which is P1

in Figure 4.4). The post-processing phase initiated by an MPI SCATTER over the CSg’s is

identical to that of approach “a2”.

In Figure 4.5, we give the pseudocode for overlapping communication and computation

(following the idea presented in [38]) in algorithm “a2” using parallel environment. All available

threads participate in the partial SpMVM of the first phase (line 4). For the following phases,

only single thread is responsible for the communication (lines 7 and 10), while the remaining

threads are busy with SpMVM computations (line 6). Synchronizations are necessary during

the iterations to prevent race conditions. The result of the last phase is communicated outside

the parallel region (line 10). To our knowledge, the implementation of communication and

computation overlapping strategy based on the idea presented in [38] and its performance

analysis that will follow in Section 4.5 have not been reported in the literature before.

4.3.3 Approach a3:

This method is the implementation of the “Standard Method” described in [39, 38] using

the communication/computation overlapping idea of “a2”. One potential problem with the

approach “a2” is that the diagonal processes which act as the sink for all MPI REDUCE calls

and the source for the MPI SCATTER call that follows may potentially be communication

“hot spots”. To prevent this, in approach “a3” the ndth phase is designated to be the ndth

process of that RSg. In Figure 4.6, we show the distribution of the b(1,j) vectors for the first

RSg in approach “a3”.

In “a3”, the point-to-point send/receive operations (exchanges) between processes at grid

points A(r,c) and A(c,r) are initiated after SpMVM in order to start the orthogonalization com-

putations. By distributing the communication load over all processes, the underlying intercon-

nection network can be used more effectively. Lewis et al. [39, 38] propose another method

called “Redistribution-Free Method” to eliminate the exchanges of method “a3” at the expense
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Figure 4.6: Approach “a3”: Example of block-row subdivision and reduction among processes
of the first RSg.

of initial swaps between block subrows3 . In our tests, performance results for this method

were not much different than for “a3”. Hence, results for the “Redistribution-Free Method”

are not included in our experimental results.

4.4 Network Load Model

Topology-aware mapping of processes to physical processors in large-scale computations can

significantly reduce the communication overheads and improve overall execution time [31]. To

analyze the data movement and communication overheads incurred by different mappings, we

use the network load model for distributed memory SpMVM computations developed in [8].

We briefly summarize this model here for convenience, and evaluate the performance of the

heuristic described in Section 4.3 in the next section, i.e., Section 4.5. Our evaluation includes

the new network architecture called the Dragonfly topology (see Section 4.5.1), in addition to

evaluation of generic distributed SpMVM algorithms on 3D Torus topology.

We model the communication graph of an SpMVM implementation by G = (VG, EG). G is

a directed graph, where the vertex set VG is the set of processes and an edge e = (u, v) ∈ EG

denotes a message sent from u to v. We define two communication graphs Gcol and Grow

associated with the CSg’s and RSg’s on a 2D (half) grid. Likewise, we model the physical

interconnection network by a weighted, directed graph H = (VH, EH, cH). The vertex set VH

is the set of physical nodes, EH is the set of links between nodes, and cH(e) is the capacity of

3For most of the scientific applications this part is just changing the initial matrix generation process, so at
zero expense overall.
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the link e = (u, v). We assume that the messages are routed between nodes constituting the

shortest path. We denote such a path by p(u, v), the set of links connecting nodes u and v. Let

P(u, v) be the set of all shortest paths between u and v. We assume that each path in P(u, v)

is used with equal probability for sending a message. We also assume static routing, i.e., the

messages are not redirected when congestion is detected on certain parts of the network.

Under this model, the topology mapping is specified by a function Γ : VG → VH. Three

quality measures can be defined for this mapping: (average) dilation D(Γ), (average) traffic

T (Γ), and (maximum) congestion X (Γ). D(Γ) = (1/|EG|)
∑

uv∈EG
|p(Γ(u),Γ(v))|, which is the

average number of links traveled by a message. Hence, it is a measure of the total communica-

tion work performed by the interconnection network. The total traffic crossing a link e ∈ EH

is

TΓ(e) =
∑

uv∈EG

(|{p : p ∈ P(Γ(u),Γ(v)) ∧ e ∈ p}|)/(P(Γ(u),Γ(v))),

and the average traffic is T (Γ) = (1/|EH|)
∑

e∈EH TΓ(e). The congestion of a link can be mod-

eled by X (e) = TΓ(e)/cH(e) and the network congestion by X (Γ) = max
e∈EH

X (e).

Since the communication graph G does not contain any time-stamp information, X (Γ) may

not be a good approximation to the actual network congestion, if G represents a large time

window. However, both Gcol and Grow capture the communication happening over a small

time window for a number of collective calls. Therefore, X (Γ) is a good approximation to the

network congestion during the column and row communications of the LA described in Section

2.2.

4.5 Experimental Results

This section reports on the performance analysis results obtained for approaches described

in Section 4.3. We use the LA (section 2.2) as a proxy to an ab initio nuclear physics application.

We used CSB COO sparse matrix storage format (Section 2.3.2) in all methods for improved

performance.
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4.5.1 Description of the Computing Platforms

We performed all our experiments on Hopper, a Cray XE6 system, and Edison, a Cray

XC30 system, at the NERSC.

Hopper - Cray XE6:

Each compute node of Hopper has two 12-core AMD ‘MagnyCours’ at 2.1 GHz processors

(i.e., 24 cores per node) with 32 GBs of main memory. Each processor is composed of two

sockets. Although the entire 32 GBs of memory is available to all cores on a node, it is physically

partitioned into four memory banks. There are three levels of cache available per core. Each

core has its own L1 and L2 caches with sizes 64KB and 512KB, respectively. One 6MB L3 cache

is shared between 6 cores. It is possible to run a single MPI process on a Hopper node with

24 OpenMP threads. However, in this case, the overall performance is significantly degraded

due to the NUMA issues. Based on the conclusions of Srinivasa and Sosonkina [61], we use one

MPI process per NUMA domain with six OpenMP threads.

Hopper has a Cray Gemini based interconnection network that has a 3D Torus topology of

dimensions 17×8×24. Two Hopper nodes are connected by a single Gemini Application-Specific

Integrated Circuit (ASIC) with two network interface controllers (NICs) [46]. Each NIC has

two links in +X, −X, +Z, −Z, but one link in +Y and −Y directions [46]. The job scheduler

on this machine ensures that physically nearby processing units are ranked consecutively [9].

Edison - Cray XC30:

Each compute node of Edison has two 12-core Intel ‘Ivy Bridge’ processors at 2.4 GHz (i.e.,

24 cores per node) with 64 GBs of main memory. Each node is composed of two sockets and

32 GBs of memory per socket. Similar to Hopper’s compute node, Edison compute node has

also three levels of cache. First two are per core with sizes 64KB (L1) and 256KB (L2), and

a 30MB L3 cache is shared between 12 cores. To match Hopper’s setup, we use four MPI

processes with six OpenMP threads on an Edison node.

Edison employs the Dragonfly [33, 24] topology for its interconnection network. Dragonfly

topology is a hierarchical network with 3 different layers. On Edison, top level groups consist of
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two cabinets. Top level groups of locally interconnected routers are connected to other groups in

an all-to-all manner using high speed global links (Rank3 network). This way, communications

between groups are routed through a single global link only. Each top-level group contains two

separate networks in it (Rank2 and Rank1 networks). Every cabinet on Edison has 3 chassis, so

there are a total of 6 chassis in a Rank2 network. Rank2 network connects a compute blade in

a chassis to the compute blades with identical slot numbers on the other 5 chassis in the group.

Rank1 network is an all-to-all network of compute blades within a chassis. Rank1 network

uses inter-Aries connections in the backplane. Every chassis deploys 16 compute blades (or 64

compute nodes). The adaptive routing deployed in this topology selects between minimal and

non-minimal routes based on the load of the network. In a minimal route, there are only two

hops between any two nodes in a group, whereas up to four hops might be required in case of a

non-minimal route. A minimal route for inter-group communications uses only a single Rank3

link, however, 2 such links are needed in case of a non-minimal route.

Network model application:

If the physical coordinates of two processing units are known then we can compute the

distance between two processes mapped onto them. Cray Linux Environment [21, 22] provides

xtprocadmin and xtdb2proc utilities to obtain this information. The collective operations

MPI BCAST and MPI REDUCE in the Cray MPI library of both Hopper and Edison are

implemented using a binomial tree algorithm [63]. The construction of EGrow and EGcol
is done

by identifying the binomial trees associated with the row and column communication groups of

the grid. In our case, four MPI processes would be mapped to a given physical node on both

Hopper and Edison. Thus, Γ is a many-to-one function. In our model, the edges corresponding

to intranode communications are not included because intranode communications do not incur

load on the physical network. Edison’s adaptive routing policies may result in non-minimal

routes in case of congestion, but we still evaluate our network load model assuming minimal

routes. So our load estimates can be described as (tight) lower bounds for the actual load on

the network.
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4.5.2 Analysis of the Obtained Results

Different test cases presented in this section are denoted by the number of diagonal processes

used in the computation, i.e., nd. We performed test runs using three different nd values, i.e.,

23, 45, and 65. The number of MPI processes used by our test runs is 529, 2025, and 4225

for the “a1/a2/a3” approaches, and 276, 1035, and 2145 for the symmetric approach “s1”.

The actual number of cores used in our test runs is 6 times the number of MPI processes due

to MPI/OpenMP hybrid parallelization. In all runs, 100 Lanczos iterations were performed

and performance results for a particular nd is averaged over three runs. Also, the specific

values are the averages of times among all the participating MPI processes. We implemented

the distributed memory SpMVM approaches in Fortran using double-precision arithmetic. In

all tests, the dimensions of the square submatrix on each MPI process is 1, 600, 000. We

used sparse matrices of varying degrees of nonzero densities to analyze the performance under

different computation/communication loads. Local number of nonzeros are 10, 50, 100, and

250 million. Row and column indices of the nonzeros in local matrices are generated randomly

on each MPI process3 .

4.5.2.1 “CPU core hours” comparison:

Figure 4.7 shows the “CPU core hours” consumed by different distributed memory SpMVM

approaches. “CPU core hours” are computed based on the total execution time for 100 Lanczos

iterations (tlanc) and the number of CPU cores used by the specific approach. Results are

normalized by the execution time of our base case implementation “a1”.

3http://www.cs.ucdavis.edu/~bai/NEP/mvm/matran.f

http://www.cs.ucdavis.edu/~bai/NEP/mvm/matran.f
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(a) Hopper run with nd = 23.
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(b) Edison run with nd = 23.
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(c) Hopper run with nd = 45.
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(d) Edison run with nd = 45.
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(e) Hopper run with nd = 65.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

10 50 100 250

N
or

m
al

iz
ed

 C
PU

 c
or

e 
ho

ur
s 

(a
cc

or
di

ng
 t

o 
a1

).

Number of nonzeros (in millions).

s1 a2 a3 a1

(f) Edison run with nd = 65.

Figure 4.7: CPU core hours used by the tested distributed SpMVM implementations on Hop-
per and Edison. Results are normalized by the CPU core hours consumed in the base case
implementation “a1”.
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Although the execution time tlanc for “s1” is the highest, Figure 4.8, among all implemen-

tations, this method exploits the matrix symmetry and, thus, uses about half the number of

cores used by other approaches (for nd diagonal processes, “s1” uses nd ∗(nd+1)/2, while other

approaches use n2
d). As Figure 4.7 shows, the total “CPU core hours” consumed by “s1” is

substantially lower. Note that the computational complexity and communication patterns of

the orthogonalization part is the same for all approaches. Therefore, gains in “s1” are due to

its better performance in distributed-memory SpMVM computations.

On Hopper, overlapping communication with computation yields significant impact in the

“a2” and “a3” implementations for small number of nonzeros (10 and 50), with “a3” gener-

ally being more efficient than “a2” independent of the sparsity. However, with large number

of nonzeros (100 and 250 millions), gains are either small or non-existent. This can be ex-

plained by two factors. First, when overlapping communication with computation, a thread is

designated as the communication thread and so there are only 5 threads instead of 6 threads

for computations (i.e., a reduction of 16.6%). As the number of nonzeros increases, the load

on computation threads also increases, but communication overheads decrease relatively. Sec-

ondly, as the number of processes (and hence nd) increases, reduction of the result vectors

requires more phases. Several small MPI reductions and OpenMP synchronizations in between

phases adversely impact the performance.

On Edison, the overall execution time is significantly improved over Hopper (up to 4×,

see Figure 4.8). The “CPU core hour” cost of “s1” relative to “a1” is also improved over

Hopper results for large number of nonzeros (100 and 250 million nonzero cases in Figure 4.7).

However, overlapping communication with computation in “a2” and “a3” tends to improve the

performance only with the smallest number of nonzeros for nd = 23 and nd = 45.

We note that the Dragonfly topology of Edison represents a major change over Hopper’s 3D

Torus interconnect, and we used the PGI compiler on Hopper, which produces well-optimized

executables for Fortran codes. On the other hand on Edison PGI compiler was not available

and we used the GNU compiler. The difference in interconnect technology, compiler, L3 and

L2 cache sizes, and the fact that we had exclusive L3 cache per MPI process on Hopper and

not on Edison might have contributed to the poor performance of “a2” and “a3” on Edison.
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4.5.2.2 Execution time comparisons within Lanczos iteration:
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Figure 4.8: The tspmv is the execution time of the SpMVM process, tcomcol is the execution
time of the communication along the column communicators, tcomall is the execution time
of the MPI calls to MPI ALLREDUCE inside the orthogonalization process, tcomrow is the
execution time of the communication along the row communicators, and texch is the time spent
for exchanging values between off-diagonal processes (this is only applicable to “a3”). Shown
values are averages among all processes.

Figure 4.8 shows the breakdown of total execution times (tlanc) into computation time

(tspmv) and various communication times. Timings in our largest runs (nd = 65) for the

matrix with lowest sparsity3 (10 million nonzeros) and the one with the highest sparsity (250

million nonzeros) is shown. From Figure 4.8, one can see that the bulk of the tlanc time is

spent performing SpMVM. Note that for “s1” SpMVM time consists of an SpMVM and an

SpMVMT. Timings of overlapped reductions over RSg’s are included in tspmv times for “s1”,

“a2”, and “a3”. Method “a1” spends a considerable amount of time for row communication

compared to its SpMVM time for smaller number of nonzeros (Figure 4.8a and 4.8b), which is

3Here, we define sparsity as number of nonzero matrix elements divided by square of matrix dimension.
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not the case when the number of nonzeros is increased to 250 (Figure 4.8c and 4.8d). Also, for

both “a2” and “a3”, the SpMVM times are larger than those for “a1”, most likely because in

both cases timings for communication along the RSg is included.

In Figure 4.8, the tcomcol time for “s1” is significantly larger than that of “a1/a2/a3” meth-

ods. This is because “s1” needs to perform two collective communications over CSg’s, whereas

other methods need only a single communication over CSg’s. These collective communication

operations are tree algorithms, so they have a time complexity of order log(p) for p processes.

Methods “a1/a2/a3” have nd processes in each group, and the time required for tcomcol is

log(nd). However, “s1” has (nd + 1)/2 processes in each group, so the total time for tcomcol in

this case is 2 log((nd + 1)/2) = 2 log(nd + 1)− 2. This difference explains the increased tcomcol

time for “s1”.

4.5.2.3 Evaluation of the network load model:

We outlined the network load model, in section 4.4, originally developed in [9], that was

extended to analyze the communication overhead of the SpMVM implementations. In Tables

4.1 and 4.2, the average dilation D, average traffic T , and maximum congestion X estimates

are shown for the communication groups CSg and RSg on Hopper and Edison, respectively.

As discussed above, “s1” needs to perform two communications over CSg and RSg groups.

Therefore, we report double the traffic values T from our analysis of the “s1” method. Note

that communicating twice does not affect the average dilation D or congestion X (because the

two communications are happening at distinct times).

Table 4.1: Communication analysis for distributed SpMVM implementations on Hopper.

“s1” “a{1/2/3}”

# of diagonals Stats CSg RSg CSg RSg

23 {D, T ,X} {0.4, 6, 6} {4.5, 10, 30} {0.6, 3, 8} {5.7, 9, 74}

45 {D, T ,X} {0.5, 6, 12} {4.2, 12, 30} {0.5, 3, 10} {5.1, 14, 112}

65 {D, T ,X} {0.5, 6, 10} {5.2, 12, 40} {0.6, 3, 12} {7.2, 14, 82}



www.manaraa.com

52

Table 4.2: Communication analysis for distributed SpMVM implementations on Edison.

“s1” “ a{1/2/3}”

# of diagonals Stats CSg RSg CSg RSg

23 {D, T ,X} {0.2, 3, 2} {1.5, 30, 22} {0.2, 0.5, 0} {1.6, 16, 24}

45 {D, T ,X} {0.5, 3, 4} {2.7, 7, 28} {0.4, 1.4, 5} {2.8, 10, 84}

65 {D, T ,X} {0.3, 3, 2} {2.0, 12, 55} {0.3, 1.5, 4} {2.6, 20, 92}

Communication links on Hopper constitute a (relatively) homogenous 3D Torus network.

However, Edison’s hierarchical interconnection network is composed of three separate networks

(Rank1, Rank2 and Rank3) with very different characteristics. The point-to-point communica-

tion benchmarks on Edison yield similar latencies and bandwidths for all 3 network types [14].

However, the Rank3 network is 2-3× slower than Rank2 and Rank1 networks under multi-point

communication tests [14]. Therefore, we use the T and X estimates from the Rank3 network

in our evaluations, while treating the links in all three networks the same to compute D.

Lower values of {D, T ,X} indicate a lower load on the network and therefore reduced com-

munication overheads would be expected in actual computations. For approaches “s1” and

“a{1/2/3}”, the network load on CSg’s are estimated to be significantly less than those of

RSg’s according to our network load model, as shown in Tables 4.1 and 4.2. This estimation is

confirmed by the actual communication times observed in our tests on both Hopper and Edison

(see the tcomcol and tcomrow timings in Figure 4.8 as an example). Our analyses show that

placing consecutively ranked processes into the same CSg’s indeed leads to a topology opti-

mized communication groups on the 3D Torus interconnect of Hopper, as well as the Dragonfly

interconnect of Edison.

To compare the data movement incurred by approaches “s1”, “a1”, “a2”, and “a3”, we

analyze the total distance (number of hops) traveled by all messages in each computation.

On Edison, we estimate that in a single iteration of the nd = 23, 45, 65 test cases, the total

distance for messages in “a1/a2/a3” is about 942, 6433, and 12175, respectively. In comparison,

for the “s1” method our estimates are about 868, 6284, and 9556, indicating data movement

reductions of 8%, 3%, and 21%, respectively. So in addition to lowering the cost of “CPU core
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hour” usage, the recently proposed “s1” method can be effective in reducing the total data

movement, too.

4.6 Conclusions

We presented performance analysis of efficient parallel SpMVM approaches “s1”, “a1”,

“a2”, and “a3” presented in literature on distributed memory multi-core architectures. We

analyzed the performance of these implementations on large scale sparse matrices using the

LA. When the same number of diagonals, nd, is used the time to completion with approaches

“a1”, “a2”, and “a3” is typically lower than “s1”. However, in terms of “CPU core hours”

consumed, in all examined cases “s1” is more efficient than “a1”, “a2”, and “a3”. In particular,

the combination of a unique half 2D processor grid, communication hiding techniques, and

topology aware mapping heuristics used in “s1” results in highly efficient distributed symmetric

SpMVM computations. The approaches “a1”, “a2”, and “a3” do not make use of the underlying

symmetry of the sparse matrix, and thus they consume more memory as well as CPU resources

overall.

We observed that the communication and computation overlapping technique that we have

implemented in “a2” (based on the idea provided in [38]) outperforms the basic approach

“a1” [39] in the sparser cases on Hopper, but generally not on Edison. We also observed that the

optimization suggested in approach “a3” [38] is generally more efficient than “a2”. Furthermore,

on Edison “a3” is competitive with or better than “a1” for the sparser cases, in contrast to

“a2”. This suggests that the benefits of overlapping communication and computation depends

on several factors such as the sparsity (amount of computation vs. communication), system

architecture, and type of interconnect.

Finally, we outline a simple network model to define measures such as the dilation, network

traffic, and congestion. We have extended this model for the analysis of algorithms discussed in

this chapter and additionally for the Dragonfly network. The lower estimate for total number of

hops traveled by messages in “s1” indicate that this approach reduce data movement overheads

compared to traditional approaches. The reduced memory footprint and low data movement

overhead properties possessed by “s1” are especially important as we move towards the exascale
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era where these considerations become of paramount importance. These results hold for both

interconnect topologies tested, i.e., 3D Torus and Dragonfly, which are very different in their

designs, but both use the same job scheduler which places consecutive MPI ranks close to each

other on the hardware [9]. The approach “s1” has been adopted in the solution of extremely

large-scale eigenvalue problems for nuclear structure computations [41] and has been shown to

achieve good scalability [9].
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CHAPTER 5. TOPOLOGY-AWARE MAPPING FOR A LARGE-SCALE

EIGENSOLVER ON A TORUS NETWORK

In this chapter we present new mappings and application setups that improve the perfor-

mance of the parallel SpMVM during the parallel LA part of MFDn compared to the default

settings. Specifically, section 5.1 introduces the motivation behind our work in this chapter, and

gives literature survey. In section 5.2 we give information on the supercomputer considered and

present the mappings that we propose. We apply these mappings and obtain empirical results,

which are discussed in section 5.3 and further analyzed using the network model presented in

section 5.4. Finally, the section 5.5 concludes the overall contributions.

5.1 Introduction

Large-scale real world scientific applications typically need supercomputers to perform their

simulations, not only because of the necessary compute-power for large-scale calculations, but

also because of the aggregate memory needed for the simulations. In order to process them one

needs to store the data in RAM, which requires the use of a large number of nodes. Scaling

such applications to larger production runs increases the number of nodes, which increases the

importance of communication among tasks located on different nodes. According to the latest

TOP 500 [3] listing, November 2015, top ranked supercomputers feature millions of cores with

more than ten thousand nodes. This steep rise in the number of nodes requires a careful anal-

ysis of the communication pattern of specific applications and the topology of the underlying

interconnect. Assigning tasks to nodes without taking into account the communication pattern

and the topology of the interconnect often produces inefficient execution. In order to achieve a

better performance one has to carefully map the tasks to the nodes, considering the load bal-



www.manaraa.com

56

ance of the data distribution and necessary communication between nodes. Task mapping is

the process of assigning application tasks to the nodes of a parallel computer so that it reduces

the communication overhead and subsequently the execution time. The general task mapping

is an NP-hard problem [18].

In this chapter we investigate the communication patterns during the parallel LA process of

MFDn and tune the performance on Mira, an IBM BG/Q, supercomputer located at ANL. As

it was previously mentioned in Section 2.4, MFDn currently uses LBCM ordering heuristic for

mapping MPI tasks for a non-contiguously, sparse, allocated space [8, 9]. However there has not

been any optimization of the task mapping for MFDn on a system with contiguous block-based

node allocation scheme, where one knows ahead of time exactly how the nodes are connected;

nor has any effort been made to exploit the torus based interconnects. Top-performing super-

computers frequently use the torus networks. Four of the top five supercomputers according to

the 2015 TOP 500 use torus based interconnects, and two of them are IBM BG/Q machines.

Also many Cray based supercomputers are using a torus interconnect, e.g., Cray XK7 machines

such as Titan at ORNL. In Japan, the K computer uses the Tofu [6] interconnect which is a

6D mesh/torus. Additionally, eight of top ten supercomputers according to the latest listing of

GRAPH 500 [4], November 2015, are also based on IBM BG/Q machines. Therefore, in this

chapter, we focus on mapping the tasks of the large-scale eigensolver on contiguous blocks of

the 5D Torus network used by IBM BG/Q supercomputers.

Aktulga et al. [8, 9] proposed a heuristic for mapping tasks on sparse allocations for MFDn.

For those test cases the MFDn application was run on Hopper, a Cray XE6 supercomputer, as

well as on Edison, a Cray XC30 supercomputer, both at NERSC. The main idea for selection

of LBCM mapping is explained in Section 2.4, and it seems to work reasonably efficient for

moderately large jobs, as also discussed in the Chapter 4. This heuristic is currently also used

by MFDn for (extremely) large production runs on IBM BG/Q block-based partitions. Here,

we propose new heuristics for efficient mapping for large-scale production runs with MFDn on

these block-based partitions, which outperform the currently used default mapping.

Bhatele et al. [16, 17] developed a tool to generate mappings on torus network for applica-

tions. While using the tool one can generate a large set of mappings, it does not necessarily



www.manaraa.com

57

generate a mapping that will perform efficiently, and hence it requires a human expert to spec-

ify and evaluate the large number of mappings it generates. In fact, the mapping that performs

well for one core count can perform poorly on another core count of the same application as it

was shown in their study. They further automated the process [29] without the need for human

experts. However, they focus on point-to-point communication, and do not examine the col-

lective communications. The mappings we propose improve the performance for all partition

sizes when placing a single MPI rank per node. However, for some partition sizes we actually

get even better performance by placing two MPI ranks per node, although for those cases the

Default mapping typically performs better than our proposed mappings.

As the problem size gets larger, the time spent on communication increases. This is because

the computational load per node stays approximately fixed as the problem size increases, but

the communication load increases both with the message size (length of the vectors) and with

the number of MPI ranks. Therefore, our main focus is on larger runs, however we also consider

relatively small runs (which go as small as 512 nodes) for completeness. Note however, that in

terms of problem size (total number of nonzero matrix elements), the smallest runs considered

in this chapter is approximately the same size as the largest runs considered in Chapter 4. All

of the runs performed in this chapter were done as part of physics production runs and the

core count for each of the problem size is the minimum required, i.e., we cannot place the same

problem size on a smaller partition.

The main contributions of this chapter are as follows:

1. We present task mapping techniques that reduce the communication time and hence the

execution time of a single LA iteration by up to 39%.

2. We describe a network model with various metrics for evaluating mappings on an IBM

BG/Q 5D Torus interconnect.

3. We further suggest a change in MPI calls during LA process, which can produce additional

reduction of up to 10% in execution time, depending on both the message size and the

partition size.
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4. Significant work was done previously for MFDn to overlap more than half of the commu-

nication with computation. However, as both the problem size and the number of MPI

ranks increase, the communication load increases but the computational load per node

remains approximately constant. Hence it is inevitable that at some point the communi-

cation time will dominate the execution time. Our study suggests that for the most sparse

matrices, with less than one in a million matrix elements being nonzero, we can no longer

achieve complete overlapping of the RSg communication, and the row communication

time can become a significant part of the total execution time. With a careful mapping

strategy we can however hide most of this communication time, which emphasizes the

importance of the studying task mappings and opens up new questions and challenges

for future work.

5.2 Mappings proposed

In this section we give information on the IBM BG/Q supercomputer, and on the proposed

mappings. We propose mappings that reduce the communication time of the LA and can

potentially reduce the communication time for other Lanczos type iterative algorithms on a

torus interconnect with contiguous block-based allocations for submitted jobs.

5.2.1 Mira, an IBM BG/Q, supercomputer

In this study we run all of our test cases on Mira, an IBM BG/Q, supercomputer installed

at ANL. (The only exception is the 2 rack cases of dataset #1, see section 5.3.1. These 2

rack cases were run on Cetus, an IBM BG/Q, test bed machine with total of 4 racks, also,

installed at ANL. Specifically, this is the first 2 rack dimension listed in Table 5.1.) The Mira

supercomputer has a total of 48 racks, where each rack contains 1024 compute nodes. One rack

contains two midplanes, each with 512 nodes, and each midplane consists of 16 nodeboards,

each containing 32 nodes. A single node of Mira contains 16GB of RAM and 17 PowerPC

A2 cores. The 17th core is reserved by the system, so the applications can use up to 16

cores, where each core is capable of running up to four hardware threads. Nodes of Mira are
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connected via 5D Torus interconnect. The source code used, for MFDn, is written in Fortran

(MPI+OpenMP), and is complied with “mpixlf90 r” compiler and “-g -O3” options set.

Table 5.1: Geometry of the partitions allocated for test cases on Mira, IBM BG/Q, for various
node counts. Except for first 2 rack geometry, which is for Cetus, IBM BG/Q.

Racks Nodes A B C D E

.5 512 4 4 4 4 2

01 1024 4 4 4 8 2

02 2048 4 4 8 8 2

02 2048 4 4 4 16 2

04 4096 8 4 4 16 2

08 8192 4 4 16 16 2

12 12288 8 4 12 16 2

16 16384 4 8 16 16 2

24 24576 4 12 16 16 2

32 32768 8 8 16 16 2

48 49152 8 12 16 16 2

Each job allocated on Mira gets a block-based contiguous partition. The location of MPI

process on the torus network is described using ABCDET coordinates, where the first five co-

ordinates correspond to the five dimensions of the torus interconnect and the last coordinate

T specifies the number of MPI processes sharing a single node. For example, for the first set

of test runs, see section 5.3.1, we have one MPI process per node and 64 threads per MPI

process, i.e., T = 1. The size of the dimension E is always 2, and all other dimensions have

size at least 4, so every node is directly connected to each of its nine (+/- direction for each

dimension) neighbors by a network link. Once the job starts each MPI process is assigned a

ABCDET coordinate on a 5D torus. The default mapping in BG/Q is the assignment of MPI

processes to nodes of the system in ABCDET order where the coordinates increment from the

rightmost dimension to the leftmost. In other words, first the dimension T increments until

the maximum value is reached, then the dimension E increments, and so on. One can permute

the letters of the geometry to specify different mappings. In case the mapping cannot be ob-

tained with just permuting, one can provide a file, which should contain a coordinate for each

of the MPI ranks in a separate line of the file. Each coordinate in this file should consist of
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six numbers separated by space, e.g., 0 0 0 1 1 0. For a sample file see Appendix A.2. Both

of these ways, either a mapping obtained by permuting or through a file can be specified with

the command line option, “RUNJOB MAPPING”, as part of “qsub” statement, e.g., “RUN-

JOB MAPPING=DCBAET” or “RUNJOB MAPPING=data.txt”. All of the geometries of

the partitions used for our test cases are listed in Table 5.1, and all of them have a torus

connectivity in all dimensions.

5.2.2 Heuristics for task mapping

Recall that the are nd CSg’s each containing (nd + 1)/2 + nextra MPI processes and nd

RSg’s each containing (nd + 1)/2 MPI processes in MFDn as described in section 2.4. In

order to reduce the communication load on network, we first focus on CSg, as the column

communication is not overlapping with any computation, and can take a significant fraction of

the overall run time of the LA. Our strategy is to place the MPI processes of each CSg on the

torus network so that the nodes under the mapping are placed as close as possible within each

CSg in terms of maximum hop count.

We first propose Base mapping described in Algorithm 4. In the current geometries on

Mira, the dimension E is always 2, the dimension D is the largest; whereas in the proposed

Base mapping the geometry g̈ is ordered from largest to smallest and equal sized dimensions

are ordered in descending order. Note that none of the geometries on Mira (including the ones

listed in Table 5.1) is ordered this way.

Algorithm 4: Base mapping steps.

1 procedure Base (g);

Input : Geometry g of the partition;

Output: New geometry g̈;

2 g̈ = g;

3 Permute the dimensions of g̈ highest to lowest;

4 Permute the equal sized dimensions of g̈ in descending order;

5 return g̈;
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Notice that if there is a communication between every pair of tasks then the ordering from

highest to lowest is the best among all permutations of dimensions. For example, consider

the 12-rack partition with the geometry <8,4,12,16,2>. The size of each CSg in this case is

79. The Default mapping gives the largest hop count 13 among CSg members in the physical

interconnection network, while the ordering we propose (i.e., Base mapping) reduces it to 9.

Although there are pairs of tasks with no communication between them. This method is aimed

at decreasing so-called maximum dilation metrics (defined later in section 5.4). The Base

mapping is meant to collect all CSg ranks into compact subgroups as much as possible.

Algorithm 5: BaseAlt mapping.

1 procedure BaseAlt (g);

Input : Geometry g of the partition;

Output: List l of torus locations;

2 g̈ = Base(g);

3 for i1 ← 0 to size(g̈1)− 1 do

4 var1 = i1;

5 for i2 ← 0 to size(g̈2)− 1 do

6 if i1 is even then

7 var2 = i2;

8 else

9 var2 = size(g̈2)− i2 − 1;

10 end

11 for i3 ← 0 to size(g̈3)− 1 do

12 if (i1 ∗ size(g̈2) + i2) is even then

13 var3 = i3;

14 else

15 var3 = size(g̈3)− i3 − 1;

16 end

17 Add var1,2,3 to l;

18 end

19 end

20 end

21 return l;

We next modify the Base mapping by alternating the increments during index assignment

between increasing and decreasing orders for each dimension based on even and odd iterations,
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respectively. This can further place the RSg ranks of Base mapping closer; we call this mapping

BaseAlt. The steps of this mapping are described in Algorithm 5 for 3D torus network (to save

space), this can easily be extended to any higher dimension of torus. A sample BaseAlt mapping

file is shown in Appendix A.2.

Placing the MPI processes using the BaseAlt mapping further decreases the largest hop

count among CSg members in the physical interconnection network. E.g., for the above example

the largest hop count that any CSg could have will decrease further to 8 with BaseAlt mapping.

5.3 Experimental results

This section contains empirical results with detailed descriptions of each of the runs. We

separate our runs into three datasets: first – for quick check (section 5.3.1); second – for more

detailed/rigorous test (section 5.3.2); and, finally, last – for comparison and analysis of best

setups with the original source code setup, which is presented in Table A.3.1. We start the

section by describing the terminology and abbreviations1 that will help us explain the further

details of the experimental setup as shown in Table 5.2.

5.3.1 Results using dataset #1

Tables 5.3 and 5.4 list the runs of first dataset and contain information on the matrices

used and application parameters, including the number of MPI processes used for each test

case based on the number of racks. Notice that the LNNZ is approximately 1 billion for all

of the cases, except for test runs 08a and 48a. For this dataset single MPI process is placed

in one node, and each MPI node runs with 64 threads, i.e., M. = c1 and Nth. = 64. Letters

“a” and “b” at the end of the run “Name”, in these tables, are used to differentiate between

different runs of the same rack size.

1In addition to these abbreviations we also give information on message size of data exchanged among the
CSg members in Appendix A.1, which was not shown in this table since it is not used explicitly throughout the
chapter.
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Table 5.2: Notations used throughout the chapter.

Abbreviation Description

Nucleus Physics case, e.g., A10Z5N5(12) where A - total nucleon number, Z - proton

number, N - neutron number, and finally Nmax (maximum number of total

oscillator quanta allowed in the many-body basis space above the minimum

for that nucleus) value is in parenthesis.

Dim. Dimension of the large matrix that needs to be tridiagonalized.

NNZ Total number of nonzero matrix elements.

LDim. Maximum local dimension of the submatrix in any given MPI process.

LNNZ Maximum number of nonzero matrix elements in any given MPI process.

Procs Total number of MPI processes used.

Nth. The number of threads used by a single MPI process. Maximum number of

hardware threads per MPI process is 64.

M. The mode of the current setup that it is running on defines how many MPI

processes will be sharing a single node. In our case we have two cases either

a single MPI process or two MPI processes will be running on a single node,

represented by c1 and c2, respectively.

S. Sparseness of the local submatrix, i.e., (LNNZ/LDim.2)∗106, in “parts-per-

million”.

R.msg The size of the data (sub-vector), in MiB, in send buffer during the broad-

cast, MPI BCAST, and reduce, MPI REDUCE, MPI routines among the

RSg members.

Table 5.3: Information on matrices of dataset #1.

Name Nucleus Dim. NNZ LDim. LNNZ S.

02a A06Z2N4(16) 595,922,646 1.97E+12 9,459,090 999,004,146 11.165

02b A10Z5N5(10) 1,698,922,480 2.10E+12 26,967,023 1,055,417,797 1.451

04a A09Z3N6(12) 2,614,910,212 4.30E+12 29,381,014 1,088,625,868 1.261

08a A08Z2N6(14) 2,433,601,898 5.27E+12 19,162,220 657,303,251 1.790

08b A09Z4N5(12) 4,232,122,420 7.49E+12 33,323,799 931,257,614 0.839

12a A08Z3N5(14) 5,155,975,309 1.25E+13 33,264,357 1,043,829,669 0.943

16a A08Z4N4(14) 6,770,401,490 1.71E+13 37,823,472 1,075,912,865 0.752

32a A08Z2N6(16) 12,020,598,212 3.77E+13 47,512,246 1,184,591,877 0.525

48a A09Z3N6(14) 16,469,097,856 3.98E+13 52,955,299 828,266,086 0.295
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Table 5.4: Application parameters used for dataset #1.

Name Procs. nd nextra |RSg| |CSg| R.msg

02a 2016 63 0 32 32 37

02b 2016 63 0 32 32 103

04a 4094 89 1 45 46 113

08a 8128 127 0 64 64 74

08b 8128 127 0 64 64 128

12a 12245 155 1 78 79 127

16a 16289 179 1 90 91 145

32a 32637 253 2 127 129 182

48a 49138 311 2 156 158 203

5.3.1.1 Baseline performance analysis

In order to establish the baseline performance, we run the application with the Default,

ABCDET, mapping using up to 48 racks (full machine). The results are presented in Fig-

ure 5.1. The tspmv is the maximum execution time of the SpMVM process (this includes both

SpMVM and SpMVMT together with the overlapped row communication time), tcolcomm is

the maximum execution time of the communication among the CSg ranks, which includes the

communication during both the MPI REDUCE SCATTER and MPI ALLGATHERV routines,

tort and tallcomm are the average computation and communication times of the reorthogonal-

ization parts, respectively.
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Figure 5.1: Percentage breakdown of execution times of all dataset #1 runs with the Default
mapping.
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In Figure 5.1a we can see that the more the number of iterations in LA the more the

percentage it takes of the overall application run time. Notice that, in Figure 5.1b, the col-

umn communication time, tcolcomm, grows with the matrix dimension and the number of

nodes; while it is only 8% for the smallest test case, it increases up to 44% of the overall

LA time for the largest runs. The communication during the reorthogonalization stage is on

MPI COMM WORLD and it stays under 5% of the total LA execution time. This part occurs

right after the MPI REDUCE SCATTER operation without synchronization at the starting

stage, so it may include time from waiting on different CSg ranks to complete their MPI RE-

DUCE SCATTER routines, therefore we take the average time for this part, whereas for all

others we have taken the maximum values. Both tort and tallcomm parts together have very

low percentage of the overall LA time, but increases with the number of iterations. Indeed the

tallcomm is largest for the run with the most iterations, 560.

The row communication occurs within the computation intensive SpMVM procedure, which

takes up a large percentage for smaller cases and less for larger ones. The row communication

overlaps with the SpMVM computation, and is completely hidden in some cases and is not in

others which we further investigate in section 5.3.2.

5.3.1.2 Empirical results and conclusions

In Table 5.5 we give the information on the number of diagonals, nd, the number of extras

per diagonal, nextra, |CSg|, the geometry, and Base mapping for each of the runs of dataset

#1. The last two columns of this table show for which mappings (if any of) the |CSg|’s evenly

fit into the subtorus of partition, and whether or not it is equal to the subtorus. For example,

the |CSg| = 16 (with M. = c1) evenly fits the following permutation of mappings <L,L,L,8,2>,

<L,L,L,L,16>, <L,8,2,2,2> (where L is any of A, B, C, D, or E), i.e., any subtorus of multiple

16, whereas only first two are equal to the |CSg|. Note the following: Whenever Base mapping

maps the CSg’s evenly or exactly onto a subtorus, then so does the BaseAlt mapping, and

whenever |CSg| is a power of 2, the CSg’s can be evenly mapped on the underlying network,

even if it does not actually fit a subtorus, except for 12, 24, and 48 racks.
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Table 5.5: Geometry and Base mapping information for dataset #1 runs.

Name
nd,

nextra
|CSg| A,B,C,D,E,T Base

|CSg|
maps

|subtorus|
evenly?

|CSg|
equals

|subtorus|?

02a/b 63,0 32 4,4,8,8,2,1 DCBAET
Default

Base/BaseAlt
Base/BaseAlt

04a 89,1 46 8,4,4,16,2,1 DACBET — —

08a/b 127,0 64 4,4,16,16,2,1 DCBAET
Default

Base/BaseAlt
—

12a 155,1 79 8,4,12,16,2,1 DCABET — —

16a 179,1 91 4,8,16,16,2,1 DCBAET — —

32a 253,2 129 8,8,16,16,2,1 DCBAET — —

48a 311,2 156 8,12,16,16,2,1 DCBAET — —

The detailed LA execution timings are presented in Figure 5.2. All of the subfigures have the

maximum execution time in seconds (measured with MPI WTIME) for tspmv and tcolcomm,

and average execution times for tort and tallcomm. All results are normalized to 100 LA

iterations for easy comparison.

For this set of tests both Base and BaseAlt mappings give better performance compared

to the Default mapping, with BaseAlt performing better than Base for 6 of the 9 cases. The

proposed mappings reduce the column communication for all test cases, with maximum reduc-

tion of 44%. Moreover, for most of the cases it can be seen that these mappings also reduce

tspmv, which includes the row communication. That is, the proposed mappings reduce the row

communication time, such that more of the row communication is overlapping with the (local)

SpMVM and SpMVMT computation as compared to the Default mapping. The only cases

whose row communication increased with the Base mapping are 8 rack runs, i.e., 08a and 08b,

however the BaseAlt mapping reduces it significantly for both runs.

We also tried a change in MPI calls of LA stage, specifically for the column communication,

which produces additional reduction of up to 10% in execution time. Recall from subsection 2.4

that the CSg communication consists of MPI REDUCE SCATTER and MPI ALLGATHERV

MPI routines. Using MPIX (MPI extensions) library provided for IBM BG/Q we have found

that the MPI ALLGATHERV operation is based on the optimal MPI ALLREDUCE routine.
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Figure 5.2: Detailed execution times for each test run of dataset #1. All timings are normalized
to 100 LA iterations.
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We have tested switching MPI ALLGATHERV operation with MPI ALLREDUCE and ob-

tained better performance for some of the rack sizes, specifically for the larger ones. We call

the versions with this change Base2 and BaseAlt2, which were run with Base and BaseAlt

mappings, respectively. The reason why this switch helps for some runs but does not for other

runs needs further careful investigation, which is outside the scope of this work.

In all of our tests this switch was implemented as a separate case, i.e., hardcoded, but it can

easily be incorporated dynamically as follows: Since we have several hundreds of iterations in

LA, we can devote several iterations to be performed by each of the MPI routines of interest and

then use MPI REDUCE routine to settle on one of them. Here, we did this MPI routine swap

only for the MPI ALLGATHERV part, in our next more detailed dataset run in section 5.3.2

we also explore a similar alternative for MPI REDUCE SCATTER, and time the two column

communications separately.

Table 5.6: Gain in percentage from the mappings proposed and call switches applied compared
to the Default mapping, which uses MPI REDUCE SCATTER and MPI ALLGATHERV. In
every column bold numbers indicate the maximum percentage achieved by proposed mappings
only.

Name Mapping tspmv tcolcomm 100Avg

02a Base 0 23 2

02b Base 0 23 5

04a BaseAlt 26 26 28

04a BaseAlt2 26 43 33

08a BaseAlt 0 42 12

08b BaseAlt 5 42 15

12a BaseAlt 32 20 27

12a BaseAlt2 32 37 33

16a BaseAlt 17 28 22

16a BaseAlt2 18 43 29

32a Base 26 18 23

32a Base2 26 36 30

48a BaseAlt 22 24 22

48a BaseAlt2 22 39 28

Table 5.6 summarizes the percentage gains obtained for different stages of the LA. The last

column of this table shows the percentage gain obtained per single LA iteration time taken

after the 100th LA iteration, 100Avg. We were able to obtain up to 42% gain in tcolcomm
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time with new mappings only. On top of the performance improvements obtained with new

mappings in some cases we also obtained around 10% gain when the MPI call switch is applied.

In general, we conclude that for 02a, 02b, and 32a runs we should use the Base mapping, and

for all other cases BaseAlt mapping. Furthermore, we can also use the MPI ALLREDUCE

routine instead of MPI ALLGATHERV. Overall, the proposed BaseAlt mapping improves the

run time in all cases and is best in most of the cases.
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Figure 5.3: Comparison of Default mapping and the best mapping combination for dataset #1
runs.

Figure 5.3a summarizes the 100Avg timings for Default and best mapping (combined with

MPI routine swap). In this figure we can see the dips in the cases of 2 and 8 rack runs.

For first test of 8 rack run it is more prevalent than the second one. We also provide two

more Figures 5.3c and 5.3d, which show tcolcomm and tcolcomm/R.msg values, respectively.

These figures taken together clearly show the dips for these two partition sizes. Furthermore,

Figure 5.3d suggests weak scaling of the column communication, but at two levels: with the
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optimal mapping tcolcomm/R.msg ≈ 0.2 for 2 and 8 racks, and tcolcomm/R.msg ≈ 0.6 for 4,

12, 16, and 32 racks. This weak scaling breaks down for 48 racks. Recall that for 2 and 8 racks,

but not for the other cases in this data set, the |CSg| is power of 2, i.e., it is 32 for 2 rack runs

and 64 for 8 rack runs, see Tables 5.4 and 5.5. As shown in Table 5.5, in both of these rack

sizes we have |CSg| mapping the subtorus evenly. This interesting observation led us to exploit

the topology explicitly, using |CSg| sizes that are powers of 2 so it maps the network, which

set the ground for our next set of runs that we perform in section 5.3.2 in much more details.

Finally, in Figure 5.3b we show the results of tspmv (which is the maximum of 100 iterations)

divided by LNNZ in billions, this gives us the approximate time of the tspmv proportional to

LNNZ. The numbers above the bars show the LNNZ in billions. According to our separate

measures of only pure SpMVM+SpMVMT (i.e., without row communication) time for 02a and

02b have shown around 114.2 and 124.34 seconds, respectively. The tspmv/LNNZ for these

two cases are 114.3426042 and 117.8119006, respectively. From these results in general we

can conclude that the best mapping combination/setup shows almost complete overlapping of

the row communication with the local SpMVM + SpMVMT, except for the largest case, 48

racks. In an ideal situation with completely overlapping row communication tspmv would be

proportional to LNNZ, and thus one would expect to have about the same bar (i.e., for these

runs it should be somewhere between 114.3426042 and 117.8119006) length for all of the cases,

possibly with some minor fluctuations due to different cache performance depending on the

sparsity. Clearly, the row communication is not fully overlapped with the Default mapping

starting at 4 racks. Thus, this figure shows that the proposed mappings also reduce the row

communication, which eventually helps hiding it behind the computation. The Figure 5.3b gives

also information on weak scalability of the application’s LA part, from these results we can

clearly see that the best mapping combinations try harder to straighten the overall execution

in order to achieve better weak scalability. Notice that the deviation, in Figure 5.3b, at full

rack size, 48, is very high from all other rack sizes. We leave out this case in our second dataset

experiments, and concentrate on rack sizes of up to 32, since for these cases the LA part seems

to show in general good weak scaling.
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5.3.2 Results using dataset #2

In this section we present the results for more rigorous runs based on our initial experiments

discussed in section 5.3.1.2. Moreover, we verify the differences between mappings using the

network model described in section 5.4. The information on the matrices used is given in

Table 5.7. Further information on the application parameters is given in Table 5.8. Although

we are more interested in optimizing the large costly cases, we have also included the small

cases (half and 1 rack) in our runs for completeness.

Table 5.7: Information on matrices of dataset #2.

Name Dim. NNZ LDim. LNNZ M. D. S.

r005a 530,189,304 5.20592E+11 17,103,317 1,077,170,909 c1 F 3.682

r01 A09a 574,827,349 6.68289E+11 13,369,180 722,279,401 c1 F 4.041

r01 A09b 574,827,349 6.68289E+11 9,125,498 337,952,291 c2 F 4.058

r01 A14b 1,056,962,719 8.67762E+11 16,782,710 434,123,420 c2 T 1.541

r02 A09a 1,597,056,996 2.30478E+12 25,351,680 1,161,556,620 c1 F 1.807

r02 A09b 1,597,056,996 2.30478E+12 17,945,343 584,246,152 c2 F 1.814

r02 A10a 1,675,942,566 2.28531E+12 26,605,737 1,150,923,937 c1 T 1.626

r04a 2,614,910,212 4.3005E+12 29,383,221 1,089,914,846 c1 F 1.262

r04b 2,614,910,212 4.3005E+12 20,592,675 535,897,640 c2 F 1.264

r08a 4,232,122,420 7.49068E+12 33,325,233 933,263,372 c1 T 0.840

r12a 5,155,975,309 1.24753E+13 33,272,515 1,043,795,926 c1 F 0.943

r16a 9,183,646,229 1.43838E+13 51,308,182 901,414,818 c1 T 0.342

r16b 9,183,646,229 1.43838E+13 36,014,299 440,681,284 c2 T 0.340

r24a 13,622,481,722 2.51012E+13 61,642,528 1,032,398,385 c1 T 0.272

r32a 23,709,299,558 2.8917E+13 92,977,645 885,937,823 c1 T 0.102

All test cases in this section were run with a modified source code, in order to better

exploit the torus structure of the network. In particular, our initial results for 2 and 8 (and

somewhat for 32) racks suggested that it may be beneficial to map each CSg onto a subtorus.

For the interconnect of Mira this can only be done if |CSg| is a power of 2. The code used in

section 5.3.1.2 had a possibility of having extra (helper) MPI processes for the diagonal MPI

processes, but with one or two of these extra processors, |CSg| is generally not a power of 2 for

any of the rack sizes, see Table 5.5. We therefore changed the code so that instead of devoting

extra MPI processes, the modified source code distributes the excess of nonzero matrix elements

on diagonal MPI processes (whenever diagonal MPI processes have more LNNZ than any of the
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Table 5.8: Application parameters used for dataset #2.

Name Procs. nd M. |RSg| R.msg Nucleus

r005a 496 31 c1 16 66 A10Z5N5(09)

r01 A09a 946 43 c1 22 51 A09Z5N4(10)

r01 A09b 2016 63 c2 32 35 A09Z5N4(10)

r01 A14b 2016 63 c2 32 65 A14Z7N7(08)

r02 A09a 2016 63 c1 32 97 A09Z4N5(11)

r02 A09b 4005 89 c2 45 69 A09Z4N5(11)

r02 A10a 2016 63 c1 32 102 A10Z2N8(12)

r04a 4005 89 c1 45 113 A09Z6N3(12)

r04b 8128 127 c2 64 79 A09Z6N3(12)

r08a 8128 127 c1 64 128 A09Z5N4(12)

r12a 12090 155 c1 78 127 A08Z3N5(14)

r16a 16110 179 c1 90 196 A11Z3N8(12)

r16b 32640 255 c2 128 138 A11Z3N8(12)

r24a 24531 221 c1 111 236 A10Z5N5(12)

r32a 32640 255 c1 128 355 A16Z8N8(10)

off-diagonal MPI processes) evenly among its CSg members without additional communication

overhead. This tends to add less than a percent or so to the LNNZ of the CSg members, but

it allows us to better exploit the network structure of Mira. So, in this modified version we do

not have the nextra term, and |RSg|=|CSg| for all test runs. Instead, we introduce the term

“D.” to identify whether the distribution was performed or not, in essence its role is similar

to that of nextra when nextra 6= 0. So, if it has a value of “T” then it is distributed, and “F”

otherwise. To differentiate these two versions of the source code we call the one with nextra the

old code, and the one with “D.” the new code. Note that nextra = 0 and D. = F corresponds

to essentially the same source code.

5.3.2.1 Baseline performance analysis

Initial results from work on dataset # 1 suggest new approaches to apply. First, when pos-

sible we should try to fit torus geometry, these are the .5, 2, 8, and 32 rack cases with one MPI

process per node, i.e., M. = c1. For the cases of 1, 4, and 16 racks the groups can fit the torus

geometry with 2 MPI processes per node. See Table 5.8 for details of group sizes. Another

approach we take from our previous study is the change in MPI routines for both of the col-
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Figure 5.4: Percentage breakdown of execution times of dataset #2 runs with the Default
mapping (if available).

umn MPI communication routines. Recall from section 5.3.1.2 that using MPI ALLREDUCE

operation instead of MPI ALLGATHERV operation can further reduce the run time. We in-

vestigate this for all the test runs. Additionally, we also investigate a similar swap between

MPI REDUCE SCATTER and MPI ALLREDUCE. The baseline performance of the new code

with Default mapping is given in Figure 5.4. We include only the ones for which we have the

results with the Default mapping and original combination of column MPI routine calls, i.e.,

MPI REDUCE SCATTER and MPI ALLGATHERV. The numbers above the bars in this fig-

ure represent the number of iterations required for convergence of LA. Note that the more the

iterations the higher the percentage of LA, Figure 5.4a.

Figure 5.4b additionally gives percentage of times spent on each LA part separately. Similar

to the first dataset, the column communication takes significant proportion of overall time, at

least 30% in most of the cases and up to 40% in some cases. Here all the times are maximum

values. Since we have explicit synchronization points before each of the communications start

happening, the times shown are accurate communication times, i.e., no wait time is included.

Additionally, while we had a single tcolcomm indicating the column communication with our

previous study, here we have tcolcomm1 and tcolcomm2, which give separate times for two

column communications. This will help us identify the best MPI routine to use. Note that

in here some of the runs seem to have no values for tcolcomm2, actually these runs did not
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separate the two column communications as such on those we have only tcolcomm values which

were put as tcolcomm1 time.
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Figure 5.5: Times for tspmv/LNNZ and row communication (in percentages) with Default
mapping for dataset #2 runs.

In Figure 5.5a we show the times for tspmv/((c#)*LNNZ) (in billions) on left y-axis, and

right y-axis shows the LNNZ (in billions). Here, in calculation of tspmv/((c#)*LNNZ), (c#)

means whether to use 1 or 2 depending on the mode c1 and c2, respectively. The actual

tspmv/((c#)*LNNZ) times are shown on top of the bars. As mentioned with previous dataset

this shows the approximate tspmv execution time for all the cases. Next, in Figure 5.5b we show

the percentages of the maximum row communications with regard to maximum SpMVM and

SpMVMT times. From all these information we can identify the cases that do not completely

overlap, which mainly include 4 rack and above runs. As will be shown later, with the proposed

mappings we achieve full overlap in some of cases which were not completely overlapped with

the Default mapping shown here.

In Table 5.9 we show the actual/pure tspmv execution times, i.e., SpMVM+SpMVMT only,

without any row communication for some of the runs. In last two columns of Table 5.9 we also

put tspmv times with row communication, and tspmv/(c#)*LNNZ values for the dataset #2

runs (similar to the ones we show in Figure 5.5a). In last column of Table 5.9 we show the

values in bold for those cases which were not fully overlapped. These hold (except for r08a)

with the results we obtained regarding the runs that do not fully overlap from Figure 5.5.
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Table 5.9: Pure SpMVM times for some of the cases of dataset #2.

Name M. Nth.
LNNZ

(in billions)

Pure

tspmv

Exec.

Time

(in sec.)

(Pure tspmv)

(c#)*LNNZ

tspmv

(in sec.)

tspmv

(c#)*LNNZ

r005a c1 64 1.08 124.90 115.96 125.88 116.86

r005a c1 63 1.08 125.84 116.83 — —

r01 A09a c1 64 0.72 83.57 115.70 84.15 116.50

r01 A09a c1 63 0.72 84.19 116.56 — —

r01 A09b c2 32 0.34 78.19 115.67 80.00 118.36

r01 A09b c2 31 0.34 79.40 117.47 — —

r01 A14b c2 32 0.43 105.87 121.93 109.17 125.73

r01 A14b c2 31 0.43 107.43 123.73 — —

r02 A09a c1 64 1.16 136.05 117.13 137.57 118.43

r02 A09b c2 32 0.58 139.11 119.05 — —

r02 A10a c1 64 1.15 136.67 118.75 138.00 119.90

r04a c1 64 1.09 — — 152.49 139.91

r08a c1 64 0.93 — — 113.78 121.91

r12a c1 64 1.04 — — 188.13 180.23

r16b c2 32 0.44 — — 376.35 427.01

r24a c1 64 1.03 — — 394.85 382.46

r32a c1 64 0.89 — — 415.00 468.43
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Finally, in Table 5.10 we give the similar information as one given in Table 5.5, but for

dataset #2. Note for all cases where |CSg| is a power of two, except the 1/2 and 8 rack cases,

the CSg’s map exactly onto a subtorus of the physical network either with the Default or the

Base and BaseAlt mappings (or with all three of them). In order to test the importance of

mapping the CSg’s exactly onto a subtorus we introduced for 8 racks Colfit1 (= CAEDBT)

mapping for which the |CSg| fits a DB = 16×4 subtorus; in addition we also considered Colfit2

(= CADBET) mapping for which two |CSg|’s fit a DBE = 16× 4× 2 subtorus.

Table 5.10: Geometry and Base mapping information for dataset #2 runs.

Name nd |CSg| A,B,C,D,E,T Base

|CSg|
maps

|subtorus|
evenly?

|CSg|
equals

|subtorus|?

r005a 31 16 4,4,4,4,2,1 DCBAET
Default

Base/BaseAlt
—

r01 A09a 43 22 4,4,4,8,2,1 DCBAET — —

r01 A09b

r01 A14b
63 32 4,4,4,8,2,2 DCBAET

Default

Base/BaseAlt
Default

r02 A09a

r02 A10a
63 32 4,4,4,16,2,1 DCBAET

Default

Base/BaseAlt

Default

Base/BaseAlt

r02 A09b 89 45 4,4,4,16,2,2 DCBAET — —

r04a 89 45 8,4,4,16,2,1 DACBET — —

r04b 127 64 8,4,4,16,2,2 DACBET
Default

Base/BaseAlt

Default

Base/BaseAlt

r08a 127 64 4,4,16,16,2,1 DCBAET

Default

Base/BaseAlt

Colfit1

Colfit2

Colfit1

r12a 155 78 8,4,12,16,2,1 DCABET — —

r16a 179 90 4,8,16,16,2,1 DCBAET — —

r16b 255 128 4,8,16,16,2,2 DCBAET
Default

Base/BaseAlt
Base/BaseAlt

r24a 221 111 4,12,16,16,2,1 DCBAET — —

r32a 255 128 8,8,16,16,2,1 DCBAET
Default

Base/BaseAlt
Base/BaseAlt
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5.3.2.2 Empirical results and conclusions

Detailed timings for dataset #2 are given in Figures 5.6 and 5.7 with the execution time

in seconds on the y-axis normalized to 100 iterations. We analyze each rack case separately.

Here we also introduce new terms “ORIG”, “ALLRED”, and “1ALLRED”. Later on we also

use “2ALLRED” name. These names are only meant to differentiate between two different

MPI routine calls used during the column communication stages. “ORIG” means that we use

MPI REDUCE SCATTER routine for first column communication, tcolcomm1, and MPI ALL-

GATHERV for the second part, tcolcomm2. The name “ORIG” already suggests that this is the

setup with the original source code, i.e., how it was used to date. Next, we name “ALLRED”

the one where we have MPI ALLREDUCE for both column communications; “1ALLRED” for

the one where we use MPI ALLREDUCE for the first column communication and MPI ALL-

GATHERV for the second column communication; and, finally, “2ALLRED” for the one where

we have MPI REDUCE SCATTER for first column communication and MPI ALLREDUCE

for the second column communication.
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Figure 5.6: Detailed execution times for each of the cases of dataset #2.
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Figure 5.7: Detailed execution times for each of the cases of dataset #2.
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The .5 and 1 rack cases are not costly and so we focus more on larger cases as mentioned

before. For the .5 rack case, the “ORIG” setup is more efficient, while for 1 rack case it is slightly

better to use the “ALLRED” setup. The 1 rack case is not affected much by a mapping, but

it is important to run it in c2 mode, so that the column communication maps better onto the

subtorus geometry.

From Figures 5.6c and 5.7b (2 rack runs) it can be seen that the mode should be set to

c1 and “ORIG” setup should be used. As for the mapping, both Base and BaseAlt perform

almost equally and reduce the time by 9% compared to Default mapping. Notice that the row

communication is fully overlapped in these cases.

Results for the 4 rack case are given in Figure 5.7c. Interestingly, in c1 mode with BaseAlt

mapping the row communication seems to be completely overlapping with computation. How-

ever, the Default mapping in c2 mode fits the torus geometry and with “ALLRED” setup gives

better performance. This emphasizes the importance of selecting the correct mode and set

of MPI operations to use for column communications. The 8 rack case results are given in

Figure 5.7d. Here, at rack size 8, both of the newly introduced mappings, Colfit1 and Colfit2,

did not perform as expected, although they fit the torus geometry nicely. This case is run in

c1 mode and the BaseAlt mapping performs better than all mappings with “ORIG” setup and

gives reduction of up to 12% compared to the Default mapping.

The results for 12 and 24 racks are similar, Figures 5.6d and 5.6e. Both run in c1 mode

with not much difference in MPI operation changes for column communication. The run with

BaseAlt mapping, with “ALLRED” setup, outperforms the Default mapping by 33% and 34%

for these cases by reducing both column and row communication in both cases.

The 16 rack case result from Figure 5.7e suggests the c1 mode and “ALLRED” setup to be

used. In this case BaseAlt mapping gives the best performance with reduction of 36% and 40%

for two test cases. It seems that the row communication is mostly overlapped in this case. Note

that for 16 racks in c2 mode the column communication time is significantly reduced compared

to c1 mode: in c2 mode the |CSg| = 128 (vs. 90 in c1 mode, for example see Table 5.10),

and maps well onto the underlying network resulting in efficient column communication. Un-

fortunately, the row communication in c2 mode is extremely slow, and therefore c1 actually
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outperforms c2 for this particular case. However, we expect that for less sparse matrices, with a

higher computational load (i.e., increasing LNNZ) and small communication load (i.e., decrease

in LDim.) c2 might actually be more efficient than c1 on this rack size.

Lastly, the results for 32 rack case are given in Figure 5.7f. While the BaseAlt mapping

reduces the run time, the Base mapping outperforms all mappings reducing run time by 21%.

The c1 mode and “1ALLRED” setup should be used in order to achieve this performance.

Overall, for all rack sizes 8 and below we seem to have full overlap, with the exception of

r04a, which seems to be mostly overlapping. Beyond 8 rack sizes we seem to have some overlap,

but certainly not full. Notice that most of the results obtained in this section are consistent

with the ones obtained in dataset #1 with regard to the best performing mappings and column

MPI routine setup with regard to single MPI rank per node. The only exception to this is 32

rack case for which in dataset #1 we used “2ALLRED” setup, but from results of dataset #

2 we found that we need to use the “1ALLRED” setup for the column communication. Also,

since in this part we have also tested with c2 mode, we found that we should use c2 for 1 and

4 rack sizes; depending on the specific run details and sparsity, c2 mode may also be beneficial

for 16 rack runs. In Table 5.11 we show the 100Avg and tspmv/(c#)*LNNZ (in billions) results

for dataset #2. From these results we can clearly see the effect of best mapping and setup

combination for the larger runs, specifically starting from 4 rack. At 12 rack size we achieved

full overlap, but at racks higher than 12 we achieved significant reduction of row communication

though not full overlap of communication with computation.



www.manaraa.com

81

Table 5.11: Comparison of Default and best mapping results for dataset #2 runs.

Best setup
tspmv

(c#)*LNNZ
100Avg

Run Mapping Setup M. Default Best
LNNZ

(∗109)
Default Best

r005a Base ORIG c1 116.82 116.77 1.08 1.47 1.45

r01 A09b
Base

BaseAlt
ALLRED c2 118.36 118.70 0.34 1.05 0.99

r01 A14b Default ALLRED c2 125.73 126.18 0.43 1.57 1.47

r02 A09a Base ORIG c1 118.43 118.48 1.16 1.80 1.64

r02 A10a
Base

BaseAlt
ORIG c1 119.90 120.10 1.15 1.83 1.67

r04b Default ALLRED c2 — 130.13 0.54 — 1.86

r08a BaseAlt ORIG c1 121.91 124.97 0.93 1.75 1.52

r12a BaseAlt ALLRED c1 180.23 125.55 1.04 3.28 2.35

r16a BaseAlt ALLRED c1 — 197.29 0.90 — 3.40

r24a BaseAlt ALLRED c1 382.46 249.96 1.03 6.74 4.55

r32a Base 1ALLRED c1 464.99 397.61 0.89 5.23 4.58
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Figure 5.8: Comparison of Default mapping and the best mapping combination for dataset #2
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Finally, in Figures 5.8a and 5.8b we show the similar results as of that shown for dataset # 1

in Figures 5.3c and 5.3d but for dataset # 2. In Figure 5.8b we show the tcolcomm/((c#)*R.msg),

where c# is replaced by 1 or 2 depending on the mode, i.e., c1 or c2, respectively. Note that

((c#)*R.msg) is a measure of the communication load per node, rather than per MPI proces-

sor. For most partition sizes we only show the optimal mode, i.e., c1 or c2, but for 16 racks

we show both c1 and c2: in c2 mode the CSg’s fit the underlying network topology, leading

to a very efficient column communication, but unfortunately the row communication is very

inefficient for this case, and the overall performance is worse than in c1 mode, see Figure 5.7e.

The Figure 5.8b clearly shows weak scaling of the column communication: the value ob-

tained for tcolcomm/((c#)*R.msg) remains approximately constant at about 0.2 to 0.3 as we

go from 1/2 rack to 32 racks, provided that we use a suitable mapping and fit the underlying

network topology. In order to do so, |CSg| has to be a power of two, and we have to use c2

mode on 1, 4, and 16 racks. If the CSg’s do not fit the underlying network, we also observe

weak scaling, but much less efficient: for 12, 16, and 24 racks (all in c1 mode) the CSg’s do

not map well onto the underlying network, and tcolcomm/((c#)*R.msg) is again approximately

constant, at about 0.8, that is about 3 times slower than for the cases that do fit the underlying

network.

In summary we suggest to use BaseAlt mapping for rack sizes 8 and higher, with the

exception of 32 where we suggest the usage of Base mapping. As for the MPI call setup at

these rack sizes we suggest usage of “2ALLRED”, exceptions are 8 and 32 rack sizes, where

we suggest the usage of “ORIG” and “1ALLRED” setups, respectively. For all of these rack

sizes we suggest running one MPI process per node, i.e., M. = c1. Based on these results we

do the final set of test runs, results are presented in Table A.3.1, where we summarize the

results with the default settings for both old and new source codes, and the best performing

setup with new source code, without any additional barriers. (From here one also can see

our suggestions for smaller rack sizes, i.e., 4 and below.) For some of the cases, we present

several different datasets to verify the robustness of the conclusions independent of differences

in matrix properties. All source codes used in this table do not use the synchronization points

during the LA iterations, this is how the application runs in production runs. Also, one can
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notice that 100Avg of Default mapping and MPI call setup presented in Figures 5.6 and 5.7 are

marginally higher than that of the ones shown in Table A.3.1, which shows that the overhead

caused by the introduced synchronization points are negligible.

In general, for the final set of runs presented in Table A.3.1 the new source code gives

improved results over the old source code most of the times. Though for 16-rack test this is

not the case, however, even for this run the new source code combined with the column MPI

setup combination and the best mapping outperforms the old source code too. In column “D.”

the letter has the same meaning as before and the number indicates the value of the nextra for

old code. We put them in one column to save space. As it can be seen from the Table A.3.1

with proposed mappings and MPI routine setups for the column communication we are able

to achieve up to 39% reduction in single LA execution time (as compared both to old and new

codes).

5.4 Network load model and evaluation of mappings

Topology-aware mapping of processes to physical processors in large-scale computations can

significantly reduce the communication overheads and improve overall execution time [8, 16,

9, 31, 17]. We analyze and compare the communication and network behavior under different

mappings using metrics from existing models [31, 32]: maximum dilation, average dilation

per edge, average bytes per link, worst-case congestion, and average network traffic. In [32]

authors have found that combining the average bytes per link and worst-case congestion metrics

improves the model. This is due to the high values for so-called rank correlation coefficient

(RCC) to predict the mapping correctly. The authors of [32] have found that for their numerical

simulations both the worst-case congestion and the average bytes per link showed a RCC of

about 90%, and the maximum dilation has a RCC of about 60% to 80%. We use the following

network load model to measure the quality of our mappings.

The process (task) communication of the LA is modeled by a graph G = (VG, EG), where

the vertex set VG is the set of processes, an edge uv ∈ EG denotes a message sent from u to v

and the weight, w(uv), of the edge is the size of the message. We define two communication

graphs Gcol and Grow associated with CSg and RSg on 2D half grid, respectively. Likewise, the
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physical interconnection network is modeled by a graph H = (VH , EH), where the vertex set

VH is the set of physical nodes, and EH represents the communication links between physical

nodes. We assume that the messages are routed between nodes constituting the shortest path,

which is the case for IBM BG/Q machines, provided all nodes are in a healthy state. A shortest

path between nodes u and v is denoted p(u, v), and the set of all shortest paths between nodes

u and v is denoted P (u, v). We use the idea behind the default IBM BG/Q parallel active

message interface (PAMI) [37] routing algorithm [20, 28]; if the routing algorithm allows more

than one shortest paths then each such path in P (u, v) is used with equal probability for sending

a message. We further assume a static routing of messages and that all links in EH have the

same capacity.

The topology mapping is represented by a function Γ : VG → VH . In order to compare

the effectiveness of task mappings, we use the following commonly used metrics. One of the

earliest metrics used is the maximum dilation (max dil) of a mapping Γ, and is defined as

max dil(Γ) = max
uv∈EG

dΓ(uv),

where dΓ(uv) is the number of hops between Γ(u) and Γ(v) in graph H. This metric aims

at minimizing the length of the longest wire in a circuit [32]. The average dilation per edge

(avg dil) measures the average number of links traversed by each message and is defined as

avg dil(Γ) =
∑

uv∈EG

dΓ(uv)/|EG|.

Next two metrics indicate a congestion on network links, and in [32] authors have found that

including both of these metrics in the model improves the prediction accuracy of the model.

The average bytes per link (avg bytes) metric measures the average number of bytes that pass

through a hardware link on the network,

avg bytes(Γ) =
∑

uv∈EG

dΓ(uv) · w(uv)/|EH |.
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The worst-case congestion (max cong) on network is measured by the maximum number of

bytes that pass through any link,

max cong(Γ) = max
`∈EH

TΓ(`),

where

TΓ(`) =
∑

uv∈EG

(w(uv) · |p : p ∈ P (Γ(u),Γ(v)) ∧ ` ∈ p|/|P (Γ(u),Γ(v))|) ,

i.e., the total traffic crossing the link ` ∈ EH .

Finally, the average network traffic (avg traf) over all links is defined as,

avg traf(Γ) =
∑
`∈EH

TΓ(`)/|EH |.

Note that in general the communication graph G does not contain any time-stamp infor-

mation, and so the worst-case congestion might not be a good approximation to the actual

network congestion when G represents a large time window. However, in our case both Gcol

and Grow capture the communication happening over a small time window for a number of

collective calls. Therefore, two congestion metrics above approximate the network congestion

well during the column and row communications in LA.

5.4.1 Evaluation of mappings

The mappings Base and BaseAlt (in case of 8 rack runs also the mappings Colfit1 and

Colfit2 ) are evaluated for both row and column communication graphs by comparing their

metric values to the values of the Default mapping. Figure 5.9 gives all metrics computed for

both graphs Grow and Gcol. We have normalized the metric values of the Base, BaseAlt, Colfit1,

and Colfit2 mappings with respect to the Default mapping in order to show all metrics on one

scale. We expect to obtain better performance with the mapping with lower metric values. As

mentioned before, all metrics do not necessarily carry the same weight for choosing the correct

mapping because some metrics have higher correlation to better performance than others.

Therefore, small improvement in one metric can be more effective than a larger improvement

in another.
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Figure 5.9: Metrics computed for test runs from dataset #2 starting from 2 racks.
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Recall that the message size between tasks u and v is denoted w(uv). During the mapping

of tasks to nodes, some pair of tasks are placed in the same nodeboard, midplane, or rack,

while others are placed in different racks. In order for our model to capture this difference we

adjust the weight of an edge between tasks u and v as follows: if they are mapped to the same

nodeboard, then the weight of the message between them is 0.9 × w(uv), if they are mapped

to the same midplane or rack, then the weight is w(uv), and if they are mapped to different

racks, the weight is given by 1.1× w(uv).

As we have mentioned in section 5.2.2, the mappings Base and BaseAlt were introduced

with the goal of decreasing the maximum dilation for column communication groups. One

can see from Figure 5.9 that indeed the maximum dilation values for introduced mappings are

below 1, i.e., these values are below than the value of Default mapping for columns. For the

row communication groups, the BaseAlt mapping was aimed to further reduce the maximum

dilation value compared to the Base mapping at a (possible) cost of slight increase on column

communication. This can also be seen in Figure 5.9, except for the 32-rack size case. However,

notice that 32-rack size case is the only one for which the Base mapping is more efficient that

the BaseAlt mapping. Many other mapping values were reduced for the proposed mappings as

well, as we discuss in details below.

Overall, the metric values are in qualitative agreement with the experimental results dis-

cussed in section 5.3.2.2 and we discuss each rack case separately. For both of the 2-rack cases,

the column communication time is reduced with the proposed mappings, Base performing

slightly better than BaseAlt, while the row communication time did not change much. This

agrees with the mapping values obtained in Figures 5.9a and 5.9c. Note that for the 2-rack

case in c2 mode, Figure 5.9b, the initial results where significantly higher than the ones in c1

mode, therefore we do not have complete run time results for this case and cannot compare

with metrics.

The 4-rack case in c2 mode is the only one where the Default mapping outperforms other

mappings. While in c1 mode it is the most inefficient, when we set the mode to c2 the row

communication seems to significantly overlap with the Default mapping. Both mappings Base

and Basealt weaken the overlapping, while slightly improving the column communication in
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c2 mode. This is justified with the network model results, Figure 5.9d shows that the metric

values for the proposed mappings are lower than the default mapping while Figure 5.9e shows

that the metric values of the proposed mappings are higher for the row communication and

lower for the column communication than the default mapping.

For 8 rack runs, as it can be seen from Figure 5.7d the mapping Colfit2 has increased

tremendously the row communication, and this is also verified by the network model shown in

Figure 5.9k, as all metric values have increased significantly compared to the Default mapping.

However, this mapping improved the column communication, as it can also be seen from the

lower metric values. The mapping Colfit1 only slightly increased the row communication and

slightly decreased the column communication. On the other hand, both mappings Base and

Basealt significantly reduced the column communication, while the row communication was

increased with the Base mapping and did not change much with the BaseAlt mapping.

The 12-rack, the c1 mode of 16-rack, and 24-rack cases have similar communication pattern,

Figures 5.9f, 5.9g,and 5.9i respectively. Both communication times and the metric values of

runs using the Default mapping were first reduced with the Base mapping, and then further

improved with the BaseAlt mapping. On the other hand, the row communication of the 16-rack

case in c2 mode, Figure 5.9h,was decreased under the BaseAlt mapping, but increased under

the Base mapping, which can be explained by a high value of the maximum dilation metric.

The column communication was decreased under both proposed mappings.

Finally, the 32-rack case is the only one when MPI calls are changed to “1ALLRED” and

the Base mapping is more efficient than BaseAlt overall due to decrease in communication for

both row and column groups. Notice the lower metric values, Figure 5.9j, for Base compared to

the BaseAlt, while both of these mappings give better performance than the Default mapping.

Further investigation of the network model is an interesting problem on its own, and we

intend to further explore this. In this study, comparing communication patterns from Fig-

ures 5.6, 5.7, and 5.9 we can see that the maximum dilation has the highest correlation to

the performance of the mapping. This confirms that the choice of minimizing the maximum

number of hops is a good strategy for reducing the communication overhead. This metric is

then followed by the average dilation per edge and average bytes per link, and then the average
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traffic. The worst-case congestion metric becomes only important when its value is large (close

to a factor of 2 or more).

While it is possible to predict the most efficient mapping when most of the metrics agree, it

is difficult when the metric values differ, as it was the case in some of our test runs. Therefore,

it would be helpful to find an objective function that captures the information of all metric

values, and gives a single value to each mapping. A simple approach would be to find a good

linear combination of metric values. Another possible direction is to use a distance metric

other than the hop counts, which would possibly decrease the number of metrics to consider if

accurate.

5.5 Conclusion

Work in this chapter can be summarized as follows. We proposed topology-aware mappings

based on the communication pattern of the LA used in the large-scale nuclear physics applica-

tion, MFDn, that exploits the network topology of IBM BG/Q supercomputer. The mappings

were evaluated with network load model using metrics: maximum dilation, average dilation per

edge, average bytes per link, worst-case congestion, and average network traffic. The metric

values were consistent with performance timings for row and column communication. All test

cases benefited from the proposed mappings, and we achieved up to 39% better performance

compared to the default mapping for the single LA iteration, and up to 28% for overall MFDn

run time. Additional 10% reduction was achieved in several cases with the MPI call change

suggested.

If the row communication is mostly overlapped, then one should mainly focus on column

communication. This can be achieved by choosing the size of the column communicator groups

so that the mapping fits well onto the torus dimensions with the correct c1 and c2 modes.

Among such mappings, select the one that minimizes the maximum dilation (and possibly

average dilation per edge) for the column communicator groups, while keeping the worst-case

congestion reasonably low. Last, optimize the MPI calls, which can be done dynamically during

the runtime. On the other hand, if the row communication is not mostly overlapped, then one

should consider both row and column communications. In this case, c1 mode seems to be more
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efficient, so the mappings are selected in c1 mode according to their maximum dilation values.

Tuning the MPI calls dynamically at runtime can also help in this case. The proposed BaseAlt

mapping achieves significantly better performance than the default mapping, and works most

efficient for most of the cases.

The network load model introduced in this chapter has a good potential for predicting

mappings before their execution due to its relatively good accuracy compared to execution

results. The model detected the efficient mappings and inefficient mappings in our test runs.

All five metric values derived from the model play a role in the efficiency of the mappings, with

maximum dilation being the most relevant, followed by average dilation per edge, average bytes

per link and worst-case congestion (when it is of the scale), and then average network traffic.

Therefore, it can be difficult to select the best mapping among efficient ones, unless several

metrics agree. The model also performed well to detect the worst mappings, for example in

our 8-rack case. The model can be further improved to predict the best mapping by possibly

introducing a single-valued objective function that captures the information given by all five

metrics. We intend to further investigate the network load model and consider other objective

functions or metrics for improving its accuracy and predicting capability.

Finally, recall that whether or not the row communication is mostly overlapping depends

on the ratio of the local workload to the communication load, which in turn depends on a

combination of the problem size and the sparsity. At a fixed total workload on a fixed total

number of compute nodes the communication load increases as the sparsity decreases, since

the message size increases. On the other hand, if the local workload and the sparsity are

fixed, then the communication load increases as the problem size increases, since the number

of nodes increases. For leadership-class runs on Mira, the communication can be overlapped

down to about one in a million nonzeros; at a sparsity of one in ten million nonzeros the row

communication becomes a significant part of the LA time.

As a future work, we also intend to further investigate the implementation of the SpMVM

kernel so that the row communication is maximally overlapped with computation as full over-

lap does not seem to be achievable for large cases. Using more than one thread to do the

communication is worth exploring, as it can also help to achieve the maximal overlapping.
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CHAPTER 6. CONCLUSION

The main results and conclusions of this thesis can be summarized as follows:

1. In Chapter 3 we tackled a challenge faced by the MFDn code: The matrix sizes of the

input, 3-body, matrix elements became unmanageable, so new approaches to obtain the,

m-scheme 3-body, matrix elements were required. One approach was to read the, 3-body,

matrix elements in different format, so-called coupled-JT , which enables MFDn to obtain

the same amount of information as in the memory-intensive, m-scheme, format but in a

much more memory-efficient manner. This approach is well-parallelizable and has been

adapted for GPGPUs.

Experiences with the initial porting of the coupled-JT to m-scheme transformation to

GPGPU using CUDA have been presented and already showed promising results in the

range of four-to-ten fold improvements. Further improvements and analysis were needed,

however, for both the CPU and GPGPU implementations. For example, the GPGPU

code may be able to take advantage of the texture memory and multiple streams. The

initial results are presented in [52], finally results after the integration of this part into

MFDn are presented in [55].

2. In Chapter 4 we analyzed the performance of a symmetric (“s1”) parallel SpMVM ap-

proach, as well as three general (nonsymmetric) parallel SpMVM approaches called “a1”,

“a2”, and “a3” presented in the literature on distributed memory multi-core architec-

tures. The performance analysis of these implementations was carried out on large scale

sparse matrices using the LA. When the same number of diagonals, nd, is used the time to

completion with approaches “a1”, “a2”, and “a3” is typically lower than “s1”. However,

in terms of “CPU core hours” consumed, in all examined cases “s1” is more efficient than
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“a1”, “a2”, and “a3”. In particular, the combination of a unique half 2D processor grid,

communication hiding techniques, and topology aware mapping heuristics used in “s1”

results in highly efficient distributed symmetric SpMVM computations. The approaches

“a1”, “a2”, and “a3” do not make use of the underlying symmetry of the sparse matrix,

and thus they consume more memory as well as CPU resources overall.

We observed that the communication and computation overlapping technique that we

have implemented in “a2” (based on the idea provided in [38]) outperforms the basic

approach “a1” [39] in the sparser cases on Hopper, but generally not on Edison, two

Cray supercomputers at NERSC. We also observed that the optimization suggested in

approach “a3” [38] is generally more efficient than “a2”. Furthermore, on Edison “a3”

is competitive with or better than “a1” for the sparser cases, in contrast to “a2”. This

suggests that the benefits of overlapping communication and computation depends on

several factors such as the problem size (amount of computation vs. communication),

system architecture, and type of interconnect.

The reduced memory footprint and low data movement overhead properties possessed

by “s1” are especially important as we move towards the exascale era where these con-

siderations become of paramount importance. These results hold for both interconnect

topologies tested, i.e., 3D Torus and Dragonfly, which are very different in their designs.

The approach “s1” is currently being adopted in MFDn and has been shown to achieve

good scalability [9].

3. In Chapter 5 we considered topology-aware mappings based on the communication pat-

tern of the LA used in the large-scale nuclear physics application, MFDn, that exploits

the network topology of IBM BG/Q supercomputer. Our results show that the default

mapping for BG/Q is generally not the best for this problem. The default mapping and

the proposed mappings were evaluated with network load model using metrics: maxi-

mum dilation, average dilation per edge, average bytes per link, worst-case congestion,

and average network traffic. The metric values have shown consistent results with the

performance timings for row and column communications, with the maximum dilation
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being the most relevant. In most of our cases the mapping that optimized this metric

was the best mapping, and using this mapping we obtained up to 40% better performance

for LA and up to 28% for the overall run.

Overlapping most of the row communication with computation can reduce the execu-

tion time of the application significantly. Whether or not the row communication is

mostly overlapped depends on the ratio of the local workload to the communication load,

which in turn depends on a combination of the problem size and the sparsity. We sug-

gest the following strategy for selecting the best mapping. If the row communication

is mostly overlapped, then one should mainly focus on column communication. This

can be achieved by choosing the size of the column communicator groups so that the

mapping fits well onto the torus dimensions with the correct c1 (one MPI process per

node) and c2 (two MPI processes per node) modes. Among such mappings, select the

one that minimizes the maximum dilation (and possibly average dilation per edge) for

the column communicator groups, while keeping the worst-case congestion reasonably

low. Last, optimizing the MPI calls can result in up to 10% additional reduction of

the LA time, which can be done dynamically during the runtime. On the other hand,

if the row communication is not mostly overlapped, then one should consider both row

and column communications. In this case, c1 mode seems to be more efficient, so the

mappings are selected in c1 mode according to their maximum dilation values. Tuning

the MPI calls dynamically at runtime can also help in this case. The proposed BaseAlt

mapping achieves significantly better performance than the default mapping, and works

most efficient for most of the cases.

The network load model introduced in Chapter 5 has a good potential for predicting

mappings before their execution due to its relatively good accuracy compared to exe-

cution results. The model detected the efficient mappings and inefficient mappings in

our test runs. The most important metric for predicting the efficiency of a mapping is

the maximum dilation, followed by average dilation per edge, average bytes per link and

worst-case congestion (when it is of the scale), and then average network traffic. We in-
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tend to further investigate the network load model and consider other objective functions

or metrics for improving its accuracy and predicting capability. As a future work, we also

intend to further investigate the implementation of the SpMVM kernel so that the row

communication is maximally overlapped with computation, as full overlap does not seem

to be achievable for large cases.
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APPENDIX ADDITIONAL DATA FOR CHAPTER 5

A.1 Information on column message size during parallel LA execution in

MFDn

The size of the data (chunk of sub-vector), in MiB, in send buffer collected during the

MPI ALLGATHERV MPI routine among the CSg members defined as “C.msg”. In case of

MPI ALLREDUCE it is same with that of first column communication, where the send buffer

size would be equal to the R.msg when |CSg|=|RSg|. When this equality does not hold then

this value is slightly smaller than shown send buffer message size. In Tables A.1.1 and A.1.2

we show the “C.msg” values for the datasets #1 and #2 discussed in Chapter 5.

Table A.1.1: Application parameters used for dataset #1. This Table is similar to Table 5.4
with addition of column for “C.msg”.

Name Procs. nd nextra |RSg| |CSg| R.msg C.msg

02a 2016 63 0 32 32 37 2

02b 2016 63 0 32 32 103 4

04a 4094 89 1 45 46 113 3

08a 8128 127 0 64 64 74 2

08b 8128 127 0 64 64 128 2

12a 12245 155 1 78 79 127 2

16a 16289 179 1 90 91 145 2

32a 32637 253 2 127 129 182 2

48a 49138 311 2 156 158 203 2
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Table A.1.2: Application parameters used for dataset #2. This Table is similar to Table 5.8
with addition of column for “C.msg”.

Name Procs. nd M. |RSg| R.msg C.msg Nucleus

r005a 496 31 c1 16 66 5 A10Z5N5(09)

r01 A09a 946 43 c1 22 51 3 A09Z5N4(10)

r01 A09b 2016 63 c2 32 35 2 A09Z5N4(10)

r01 A14b 2016 63 c2 32 65 3 A14Z7N7(08)

r02 A09a 2016 63 c1 32 97 4 A09Z4N5(11)

r02 A09b 4005 89 c2 45 69 2 A09Z4N5(11)

r02 A10a 2016 63 c1 32 102 4 A10Z2N8(12)

r04a 4005 89 c1 45 113 3 A09Z6N3(12)

r04b 8128 127 c2 64 79 2 A09Z6N3(12)

r08a 8128 127 c1 64 128 2 A09Z5N4(12)

r12a 12090 155 c1 78 127 2 A08Z3N5(14)

r16a 16110 179 c1 90 196 3 A11Z3N8(12)

r16b 32640 255 c2 128 138 2 A11Z3N8(12)

r24a 24531 221 c1 111 236 3 A10Z5N5(12)

r32a 32640 255 c1 128 355 3 A16Z8N8(10)
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A.2 Sample BaseAlt mapping file

Here we show the sample BaseAlt mapping file for the geometry of 3× 3× 4× 5× 2 in c1

mode.

0 0 0 0 0 0

0 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 1 0

2 1 0 0 1 0

2 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 0 0

0 2 0 0 0 0

0 2 0 0 1 0

1 2 0 0 1 0

1 2 0 0 0 0

2 2 0 0 0 0

2 2 0 0 1 0

2 2 1 0 1 0

2 2 1 0 0 0

1 2 1 0 0 0

1 2 1 0 1 0

0 2 1 0 1 0

0 2 1 0 0 0

0 1 1 0 0 0

0 1 1 0 1 0

1 1 1 0 1 0

1 1 1 0 0 0

2 1 1 0 0 0

2 1 1 0 1 0

2 0 1 0 1 0

2 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 1 0

0 0 1 0 1 0

0 0 1 0 0 0

0 0 2 0 0 0

0 0 2 0 1 0

1 0 2 0 1 0

1 0 2 0 0 0

2 0 2 0 0 0

2 0 2 0 1 0

2 1 2 0 1 0

2 1 2 0 0 0

1 1 2 0 0 0

1 1 2 0 1 0

0 1 2 0 1 0

0 1 2 0 0 0

0 2 2 0 0 0

0 2 2 0 1 0

1 2 2 0 1 0

1 2 2 0 0 0

2 2 2 0 0 0

2 2 2 0 1 0

2 2 3 0 1 0

2 2 3 0 0 0

1 2 3 0 0 0

1 2 3 0 1 0

0 2 3 0 1 0

0 2 3 0 0 0

0 1 3 0 0 0

0 1 3 0 1 0

1 1 3 0 1 0

1 1 3 0 0 0

2 1 3 0 0 0

2 1 3 0 1 0

2 0 3 0 1 0

2 0 3 0 0 0

1 0 3 0 0 0

1 0 3 0 1 0

0 0 3 0 1 0

0 0 3 0 0 0

0 0 3 1 0 0

0 0 3 1 1 0

1 0 3 1 1 0

1 0 3 1 0 0

2 0 3 1 0 0

2 0 3 1 1 0

2 1 3 1 1 0

2 1 3 1 0 0

1 1 3 1 0 0

1 1 3 1 1 0

0 1 3 1 1 0

0 1 3 1 0 0

0 2 3 1 0 0

0 2 3 1 1 0

1 2 3 1 1 0

1 2 3 1 0 0

2 2 3 1 0 0

2 2 3 1 1 0

2 2 2 1 1 0

2 2 2 1 0 0

1 2 2 1 0 0

1 2 2 1 1 0

0 2 2 1 1 0

0 2 2 1 0 0

0 1 2 1 0 0

0 1 2 1 1 0

1 1 2 1 1 0

1 1 2 1 0 0

2 1 2 1 0 0

2 1 2 1 1 0

2 0 2 1 1 0

2 0 2 1 0 0

1 0 2 1 0 0

1 0 2 1 1 0

0 0 2 1 1 0

0 0 2 1 0 0

0 0 1 1 0 0

0 0 1 1 1 0

1 0 1 1 1 0

1 0 1 1 0 0

2 0 1 1 0 0

2 0 1 1 1 0

2 1 1 1 1 0

2 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 1 0

0 1 1 1 1 0

0 1 1 1 0 0

0 2 1 1 0 0

0 2 1 1 1 0

1 2 1 1 1 0

1 2 1 1 0 0

2 2 1 1 0 0
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2 2 1 1 1 0

2 2 0 1 1 0

2 2 0 1 0 0

1 2 0 1 0 0

1 2 0 1 1 0

0 2 0 1 1 0

0 2 0 1 0 0

0 1 0 1 0 0

0 1 0 1 1 0

1 1 0 1 1 0

1 1 0 1 0 0

2 1 0 1 0 0

2 1 0 1 1 0

2 0 0 1 1 0

2 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 1 0

0 0 0 1 1 0

0 0 0 1 0 0

0 0 0 2 0 0

0 0 0 2 1 0

1 0 0 2 1 0

1 0 0 2 0 0

2 0 0 2 0 0

2 0 0 2 1 0

2 1 0 2 1 0

2 1 0 2 0 0

1 1 0 2 0 0

1 1 0 2 1 0

0 1 0 2 1 0

0 1 0 2 0 0

0 2 0 2 0 0

0 2 0 2 1 0

1 2 0 2 1 0

1 2 0 2 0 0

2 2 0 2 0 0

2 2 0 2 1 0

2 2 1 2 1 0

2 2 1 2 0 0

1 2 1 2 0 0

1 2 1 2 1 0

0 2 1 2 1 0

0 2 1 2 0 0

0 1 1 2 0 0

0 1 1 2 1 0

1 1 1 2 1 0

1 1 1 2 0 0

2 1 1 2 0 0

2 1 1 2 1 0

2 0 1 2 1 0

2 0 1 2 0 0

1 0 1 2 0 0

1 0 1 2 1 0

0 0 1 2 1 0

0 0 1 2 0 0

0 0 2 2 0 0

0 0 2 2 1 0

1 0 2 2 1 0

1 0 2 2 0 0

2 0 2 2 0 0

2 0 2 2 1 0

2 1 2 2 1 0

2 1 2 2 0 0

1 1 2 2 0 0

1 1 2 2 1 0

0 1 2 2 1 0

0 1 2 2 0 0

0 2 2 2 0 0

0 2 2 2 1 0

1 2 2 2 1 0

1 2 2 2 0 0

2 2 2 2 0 0

2 2 2 2 1 0

2 2 3 2 1 0

2 2 3 2 0 0

1 2 3 2 0 0

1 2 3 2 1 0

0 2 3 2 1 0

0 2 3 2 0 0

0 1 3 2 0 0

0 1 3 2 1 0

1 1 3 2 1 0

1 1 3 2 0 0

2 1 3 2 0 0

2 1 3 2 1 0

2 0 3 2 1 0

2 0 3 2 0 0

1 0 3 2 0 0

1 0 3 2 1 0

0 0 3 2 1 0

0 0 3 2 0 0

0 0 3 3 0 0

0 0 3 3 1 0

1 0 3 3 1 0

1 0 3 3 0 0

2 0 3 3 0 0

2 0 3 3 1 0

2 1 3 3 1 0

2 1 3 3 0 0

1 1 3 3 0 0

1 1 3 3 1 0

0 1 3 3 1 0

0 1 3 3 0 0

0 2 3 3 0 0

0 2 3 3 1 0

1 2 3 3 1 0

1 2 3 3 0 0

2 2 3 3 0 0

2 2 3 3 1 0

2 2 2 3 1 0

2 2 2 3 0 0

1 2 2 3 0 0

1 2 2 3 1 0

0 2 2 3 1 0

0 2 2 3 0 0

0 1 2 3 0 0

0 1 2 3 1 0

1 1 2 3 1 0

1 1 2 3 0 0

2 1 2 3 0 0

2 1 2 3 1 0

2 0 2 3 1 0

2 0 2 3 0 0

1 0 2 3 0 0

1 0 2 3 1 0

0 0 2 3 1 0

0 0 2 3 0 0

0 0 1 3 0 0

0 0 1 3 1 0

1 0 1 3 1 0

1 0 1 3 0 0

2 0 1 3 0 0

2 0 1 3 1 0

2 1 1 3 1 0

2 1 1 3 0 0

1 1 1 3 0 0

1 1 1 3 1 0

0 1 1 3 1 0

0 1 1 3 0 0

0 2 1 3 0 0

0 2 1 3 1 0

1 2 1 3 1 0

1 2 1 3 0 0

2 2 1 3 0 0

2 2 1 3 1 0
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2 2 0 3 1 0

2 2 0 3 0 0

1 2 0 3 0 0

1 2 0 3 1 0

0 2 0 3 1 0

0 2 0 3 0 0

0 1 0 3 0 0

0 1 0 3 1 0

1 1 0 3 1 0

1 1 0 3 0 0

2 1 0 3 0 0

2 1 0 3 1 0

2 0 0 3 1 0

2 0 0 3 0 0

1 0 0 3 0 0

1 0 0 3 1 0

0 0 0 3 1 0

0 0 0 3 0 0

0 0 0 4 0 0

0 0 0 4 1 0

1 0 0 4 1 0

1 0 0 4 0 0

2 0 0 4 0 0

2 0 0 4 1 0

2 1 0 4 1 0

2 1 0 4 0 0

1 1 0 4 0 0

1 1 0 4 1 0

0 1 0 4 1 0

0 1 0 4 0 0

0 2 0 4 0 0

0 2 0 4 1 0

1 2 0 4 1 0

1 2 0 4 0 0

2 2 0 4 0 0

2 2 0 4 1 0

2 2 1 4 1 0

2 2 1 4 0 0

1 2 1 4 0 0

1 2 1 4 1 0

0 2 1 4 1 0

0 2 1 4 0 0

0 1 1 4 0 0

0 1 1 4 1 0

1 1 1 4 1 0

1 1 1 4 0 0

2 1 1 4 0 0

2 1 1 4 1 0

2 0 1 4 1 0

2 0 1 4 0 0

1 0 1 4 0 0

1 0 1 4 1 0

0 0 1 4 1 0

0 0 1 4 0 0

0 0 2 4 0 0

0 0 2 4 1 0

1 0 2 4 1 0

1 0 2 4 0 0

2 0 2 4 0 0

2 0 2 4 1 0

2 1 2 4 1 0

2 1 2 4 0 0

1 1 2 4 0 0

1 1 2 4 1 0

0 1 2 4 1 0

0 1 2 4 0 0

0 2 2 4 0 0

0 2 2 4 1 0

1 2 2 4 1 0

1 2 2 4 0 0

2 2 2 4 0 0

2 2 2 4 1 0

2 2 3 4 1 0

2 2 3 4 0 0

1 2 3 4 0 0

1 2 3 4 1 0

0 2 3 4 1 0

0 2 3 4 0 0

0 1 3 4 0 0

0 1 3 4 1 0

1 1 3 4 1 0

1 1 3 4 0 0

2 1 3 4 0 0

2 1 3 4 1 0

2 0 3 4 1 0

2 0 3 4 0 0

1 0 3 4 0 0

1 0 3 4 1 0

0 0 3 4 1 0

0 0 3 4 0 0
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A.3 Results of best run setups

Table A.3.1: Results of best runs without any synchronization points in source code during

LA.

rack run Nucleus Dim. NNZ LDim. LNNZ

r01 A09 1,2,3,4 A09Z5N4(10) 574,827,349 668,289,364,616 9,125,498 337,952,291

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 2016,63 c2 0 OLD Default ORIG 1.06

2 2016,63 c2 F NEW Default ORIG 1.04

3 2016,63 c2 F NEW Base ALLRED 0.976

4 2016,63 c2 F NEW BaseAlt ALLRED 0.976

rack run Nucleus Dim. NNZ LDim. LNNZ

r01 A14 1,2,3 A14Z7N7(8) 1,056,962,719 867,761,992,371 16,782,710 434,123,420

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 2016,63 c2 0 OLD Default ORIG 1.54

2 2016,63 c2 T NEW Default ORIG 1.55

3 2016,63 c2 T NEW Default ALLRED 1.45

rack run Nucleus Dim. NNZ LDim. LNNZ

r02 A09 1,2,3 A09Z4N5(11) 1,597,056,996 2,304,776,012,970 25,351,680 1,161,556,620

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 2016,63 c1 0 OLD Default ORIG 1.86

2 2016,63 c1 F NEW Default ORIG 1.79

3 2016,63 c1 F NEW Base ORIG 1.64

rack run Nucleus Dim. NNZ LDim. LNNZ

r02 A10 1,2,3 A10Z2N8(12) 1,675,942,566 2,285,314,123,353 26,605,737 1,150,923,937

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 2016,63 c1 0 OLD Default ORIG 1.81

2 2016,63 c1 T NEW Default ORIG 1.82

3 2016,63 c1 T NEW Base ORIG 1.66

rack run Nucleus Dim. NNZ LDim. LNNZ

Continued on next page
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Table A.3.1 – Continued from previous page

r04 1 A09Z6N3(12) 2,614,910,212 4,300,498,397,663 29,383,221 1,089,914,846

2,3 A09Z6N3(12) 2,614,910,212 4,300,498,397,663 20,592,675 535,897,640

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 4094,89 c1 1 OLD Default ORIG 2.97

2 8128,127 c2 F NEW Default ORIG 2.15

3 8128,127 c2 F NEW Default ALLRED 1.81

rack run Nucleus Dim. NNZ LDim. LNNZ

r04 1 A07Z4N3(14) 1,244,131,981 2,993,087,120,995 13,979,801 760,027,043

2,3 A07Z4N3(14) 1,244,131,981 2,993,087,120,995 9,797,497 374,024,971

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 4094,89 c1 1 OLD Default ORIG 1.45

2 8128,127 c2 F NEW Default ORIG 1.25

3 8128,127 c2 F NEW Default ALLRED 1.11

rack run Nucleus Dim. NNZ LDim. LNNZ

r08 1 A09Z5N4(12) 4,232,122,420 7,490,682,147,171 33,325,233 957,742,166

2,3 A09Z5N4(12) 4,232,122,420 7,490,682,147,171 33,325,233 933,263,372

4 A09Z4N5(12) 4,232,122,420 7,490,682,147,171 33,325,233 933,263,372

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 8128,127 c1 0 OLD Default ORIG 2.06

2 8128,127 c1 T NEW Default ORIG 1.73

3 8128,127 c1 T NEW BaseAlt ORIG 1.52

4 8128,127 c1 T NEW Default 1ALLRED 1.55

rack run Nucleus Dim. NNZ LDim. LNNZ

r08 1,2,3,4 A08Z2N6(14) 2,433,601,898 5,270,919,067,746 19,164,067 657,947,271

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 8128,127 c1 0 OLD Default ORIG 1.14

2 8128,127 c1 T NEW Default ORIG 1.14

3 8128,127 c1 T NEW BaseAlt ORIG 0.998

4 8128,127 c1 T NEW Default 1ALLRED 1.03

rack run Nucleus Dim. NNZ LDim. LNNZ

r08 1,2,3,4 A06Z2N4(18) 2,052,828,564 9,851,311,327,509 16,166,544 1,228,231,085

Continued on next page
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Table A.3.1 – Continued from previous page

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 8128,127 c1 0 OLD Default ORIG 1.71

2 8128,127 c1 F NEW Default ORIG 1.71

3 8128,127 c1 F NEW BaseAlt ORIG 1.59

4 8128,127 c1 F NEW Default 1ALLRED 1.62

rack run Nucleus Dim. NNZ LDim. LNNZ

r12 1,2,3 A08Z5N3(14) 5,155,975,309 12,475,336,222,575 33,272,515 1,044,666,301

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 12245,155 c1 1 OLD Default ORIG 3.28

2 12090,155 c1 F NEW Default ORIG 3.2

3 12090,155 c1 F NEW BaseAlt 2ALLRED 2.13

rack run Nucleus Dim. NNZ LDim. LNNZ

r16 1,2,3 A11Z3N8(12) 9,183,646,229 14,383,837,094,961 51,308,182 901,414,818

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 16289,179 c1 1 OLD Default ORIG 4.74

2 16110,179 c1 T NEW Default ORIG 5.16

3 16110,179 c1 T NEW BaseAlt 2ALLRED 3.11

rack run Nucleus Dim. NNZ LDim. LNNZ

r16 1,2,3 A08Z4N4(14) 6,770,401,490 17,131,447,517,484 37,829,602 1,075,912,865

4 A08Z4N4(14) 6,770,401,490 17,131,447,517,484 26,557,713 531,524,652

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 16289,179 c1 1 OLD Default ORIG 3.48

2 16110,179 c1 T NEW Default ORIG 3.84

3 16110,179 c1 T NEW BaseAlt 2ALLRED 2.46

4 32640,255 c2 T NEW BaseAlt ALLRED 3.33

rack run Nucleus Dim. NNZ LDim. LNNZ

r24 1,2 A10Z5N5(12) 13,622,481,722 25,101,244,695,035 61,642,528 1,032,398,385

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 24531,221 c1 T NEW Default ORIG 6.69

2 24531,221 c1 T NEW BaseAlt 2ALLRED 4.42

Continued on next page



www.manaraa.com

103

Table A.3.1 – Continued from previous page

rack run Nucleus Dim. NNZ LDim. LNNZ

r32 1,2 A16Z8N8(10) 23,709,299,558 28,917,010,554,578 92,977,645 885,937,823

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 32640,255 c1 T NEW Default ORIG 5.74

2 32640,255 c1 T NEW Base 1ALLRED 4.56

rack run Nucleus Dim. NNZ LDim. LNNZ

r32 1 A08Z2N6(16) 12,020,598,212 37,690,344,305,182 47,517,988 1,184,591,877

2,3 A08Z2N6(16) 12,020,598,212 37,690,344,305,182 47,145,668 1,166,845,311

run Procs,nd Mode D. Code Mapping MPI 100Avg

1 32637,253 c1 2 OLD Default ORIG 4.07

2 32640,255 c1 T NEW Default ORIG 3.1

3 32640,255 c1 T NEW Base 1ALLRED 2.47
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Joachim Langhammer, Esmond Ng, Erik Saule, Robert Roth, James P. Vary, and Chao

Yang. No Core CI calculations for light nuclei with chiral 2- and 3-body forces. Journal

of Physics: Conference Series, 454(1):012063, 2013.

[42] Pieter Maris, Hasan Metin Aktulga, Mark A. Caprio, Ümit V. Çatalyürek, Esmond G.
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